Volume 30, Issue 139 (March & April 2022)                   J Adv Med Biomed Res 2022, 30(139): 75-85 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaily K, Iman M, Bahari Z. COVID-19 Treatment Options and Their Mechanism of Action up to Now: An Overview of Clinical Trials. J Adv Med Biomed Res 2022; 30 (139) :75-85
URL: http://journal.zums.ac.ir/article-1-6308-en.html
1- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
2- Dept. of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran , iman1359@yahoo.com.
3- Dept. of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract:   (89785 Views)

Novel coronavirus causes the outbreak of COVID-19. There is still no verified treatment regimen against this novel virus; however, different drugs and compounds have been tested against it. Ample proposals have led to a good understanding of pathogenesis and drug efficacy against the novel virus disease. Excess systemic inflammation, which is described as cytokine storm, in the severe cases of COVID-19 can pass through the blood-brain barrier, enter the brain tissue, and activate the microglial cells and oligodenritcytes. Activation of the microglia cells and oligodenritcytes can increase generation of reactive oxygen species in the brain. Excess generation of reactive oxygen species can in turn increase neuro-inflammation in some cases of patients with COVID-19. Treatment of COVID-19 is far from clear. Today, some antiviral drugs such as remdisivir, favipiravir, ribavirin, kaletra, and arbidol are being tested against the disease. Besides these drugs, corticosteroids, anti-malaria drugs (such as chloroquine family), anticoagulants (such as heparin or enoxaparin) are repurposed. In this paper, first we explained the pathogenesis of COVID-19 particles, particularly in the brain. Second, we reviewed recent treatment options up to now, including interferon therapy, convalescent plasma exchange, plasmapheresis, immunoglobin therapy, and use of specified monoclonal anti-bodies in COVID-19 patients.

Full-Text [PDF 376 kb]   (47087 Downloads) |   |   Full-Text (HTML)  (1624 Views)  

 In this paper, first we explained the pathogenesis of COVID-19 particles, particularly in the brain. Second, we reviewed recent treatment options up to now, including interferon therapy, convalescent plasma exchange, plasmapheresis, immunoglobin therapy, and use of specified monoclonal anti-bodies in COVID-19 patients.


Type of Study: Review Article | Subject: Pharmacology
Received: 2020/11/26 | Accepted: 2021/05/23 | Published: 2022/01/31

References
1. Almeida JD, Tyrrell D. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967; 1(2):175-8. [DOI:10.1099/0022-1317-1-2-175] [PMID]
2. Zhu N, Zhang D, Wang W, et al. A Novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med. 2020; 382(8):727-33. [DOI:10.1056/NEJMoa2001017] [PMID] [PMCID]
3. Fan Y, Zhao K, Shi ZL, Zhou P. Bat coronaviruses in China. Viruses. 2019; 11(3):210. [DOI:10.3390/v11030210] [PMID] [PMCID]
4. Emanuel EJ. The lessons of SARS. Ann Intern Med. 2003; 139(7):589-91. [DOI:10.7326/0003-4819-139-7-200310070-00011] [PMID]
5. Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS, Zaher WA. Middle East respiratory ryndrome coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci. 2018; 22(15):4956-61.
6. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID‐19. Arthritis Rheum. 2020; 72(7): 1059-63. [DOI:10.1002/art.41285] [PMID] [PMCID]
7. Zakeri A, Jadhav AP, Sullenger BA, Nimjee SM. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for neurointerventionalist. J NeuroIntervent Surg. 2021; 13:202-06. [DOI:10.1136/neurintsurg-2020-016794] [PMID]
8. Spence JD, de Freitas GR, Pettigrew LC,et al. Mechanisms of stroke in COVID-19. Cerebrovasc Dis. 2020; 49:451-58. [DOI:10.1159/000509581] [PMID] [PMCID]
9. Sepehrinezhad A, Shahbazi A, Negahcorresponding SS. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J Neurovirol. 2020; 16 :1-6. [DOI:10.1007/s13365-020-00851-2] [PMID] [PMCID]
10. Tremblay ME, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: The Role for Glia. Front Cell Neurosci. 2020; 14: 592214. [DOI:10.3389/fncel.2020.592214] [PMID] [PMCID]
11. Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006; 66:193-292. [DOI:10.1016/S0065-3527(06)66005-3]
12. Prajapat M, Sarma P, Shekhar N, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020; 52(1):56-65. [DOI:10.4103/ijp.IJP_115_20] [PMID] [PMCID]
13. Wang K, Chen W, Zhou YS, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020 (In Press). [DOI:10.1101/2020.03.14.988345]
14. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2019; PMID: 31643176.
15. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(7):449-63. [DOI:10.2183/pjab.93.027] [PMID] [PMCID]
16. Crotty S, Cameron C, Andino R. Ribavirin's antiviral mechanism of action: lethal mutagenesis? J Mol Med. 2002; 80(2):86-95. [DOI:10.1007/s00109-001-0308-0] [PMID]
17. Yee HS, Currie SL, Tortorice K, et al. Retreatment of hepatitis C with consensus interferon and ribavirin after nonresponse or relapse to pegylated interferon and ribavirin: a national VA clinical practice study. Dig Dis Sci. 2011; 56(8):2439-48. [DOI:10.1007/s10620-011-1746-3] [PMID]
18. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020; 248:117477. [DOI:10.1016/j.lfs.2020.117477] [PMID] [PMCID]
19. Yuan J, Zou R, Zeng L, et al. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res. 2020 (In Press). [DOI:10.21203/rs.3.rs-16554/v1]
20. Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4): 326. [DOI:10.3390/v11040326] [PMID] [PMCID]
21. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020; 295, 4773-4779. [DOI:10.1074/jbc.AC120.013056] [PMID] [PMCID]
22. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017; 9(396):eaal3653. [DOI:10.1126/scitranslmed.aal3653] [PMID] [PMCID]
23. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3):269-71. [DOI:10.1038/s41422-020-0282-0] [PMID] [PMCID]
24. Mulangu S, Dodd LE, Davey RT, et al. A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med. 2019; 381(24):2293-303. [DOI:10.1056/NEJMoa1910993] [PMID]
25. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 395(10236):1569-78. [DOI:10.1016/S0140-6736(20)31022-9]
26. Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014; 508(7496):402-5. [DOI:10.1038/nature13027] [PMID] [PMCID]
27. Westover JB, Mathis A, Taylor R, et al. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral Res. 2018; 156:38-45. [DOI:10.1016/j.antiviral.2018.05.013] [PMID] [PMCID]
28. Eyer L, Nougairède A, Uhlířová M, et al. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor galidesivir (BCX4430) and also attenuates the virus for mice. J Virol. 2019; 93(16): e00367-19. [DOI:10.1128/JVI.00367-19] [PMID] [PMCID]
29. Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014; 107:84-94. [DOI:10.1016/j.antiviral.2014.04.006] [PMID] [PMCID]
30. Brooks MJ, Burtseva EI, Ellery PJ, et al. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol. 2012; 84(1):170-81. [DOI:10.1002/jmv.22234] [PMID]
31. Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020; 14(1):64-8. [DOI:10.5582/bst.2020.01030] [PMID]
32. Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv. 2020 (In Press). [DOI:10.1101/2020.03.17.20037432]
33. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. 2020; 81(1). [DOI:10.1016/j.jinf.2020.03.002] [PMID] [PMCID]
34. Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020. [DOI:10.1016/j.jinf.2020.03.060] [PMID] [PMCID]
35. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2019; PMID: 31643176.
36. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases. Lancet Infect Dis. 2003; 3(11):722-7. [DOI:10.1016/S1473-3099(03)00806-5]
37. Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig. 2018; 38(8):653-71. [DOI:10.1007/s40261-018-0656-y] [PMID]
38. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int J Antimicrob Agents. 2020:105945. [DOI:10.1016/j.ijantimicag.2020.105945] [PMID] [PMCID]
39. Jie Z, He H, Xi H, Zhi Z. Multicenter collaboration group of department of science and technology of Guangdong province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. 2020; 43(3):185-188.
40. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 2020:105949. [DOI:10.1016/j.ijantimicag.2020.105949] [PMID] [PMCID]
41. Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci). 2020; 49(2):215-19.
42. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020; 369:1849. [DOI:10.1136/bmj.m1849] [PMID] [PMCID]
43. Nussey SWS. Endocrinology: An Integrated Approach. Oxford: BIOS Scientific Publishers; 2001. [DOI:10.4324/9780203450437]
44. Liu D, Ahmet A, Ward L, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. All Asth Clin Immun. 2013; 9:30. [DOI:10.1186/1710-1492-9-30] [PMID] [PMCID]
45. Zha L, Li S, Pan L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust. 2020; 212 (9): 416-20. [DOI:10.5694/mja2.50577] [PMID] [PMCID]
46. Yang Z, Liu J, Zhou Y, Zhao X, Zhao Q, Liu J. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020; 81(1): e13-e20. [DOI:10.1016/j.jinf.2020.03.062] [PMID] [PMCID]
47. Fang X, Mei Q, Yang T, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-1. J Infect. 2020; 81(1): 147-78. https://doi.org/10.1016/j.jinf.2020.03.013 [DOI:10.1016/j.jinf.2020.03.039]
48. WHO. Clinical management of severe acute respiratory infection when COVID-19 is suspected. 2020.
49. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The perspectives of clinical immunologists from China. Clin Immunol. 2020; 214:108393. [DOI:10.1016/j.clim.2020.108393] [PMID] [PMCID]
50. Ni Qin DC, Li Yongtao, et al. Retrospective analysis of low-dose glucocorticoids on virus clearance in patients with new coronavirus pneumonia. Chinese J Clin Infect Dis. 2020.
51. Han Y, Jiang M, Xia D, et al. COVID-19 in a patient with long-term use of glucocorticoids: A study of a familial cluster. Clin Immunol. 2020; 214:108413. [DOI:10.1016/j.clim.2020.108413] [PMID] [PMCID]
52. Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59(3):252-6. [DOI:10.1136/thorax.2003.012658] [PMID] [PMCID]
53. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020; 47(2):119-21. https://doi.org/10.1016/j.jgg.2020.02.001 [DOI:10.1016/j.jgg.2016.12.004] [PMID] [PMCID]
54. Yao TT, Qian JD, Zhu W-Y, Wang Y, Wang G-Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol. 2020; 92(6):556-63. [DOI:10.1002/jmv.25729] [PMID] [PMCID]
55. Cao B, Wang Y, Wen D, et al. A Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020; 382:1787-99. [DOI:10.1056/NEJMoa2001282] [PMID] [PMCID]
56. Chen Q, Quan B, Li X, et al. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J Med Virol. 2020; 92(6): 683-7. [DOI:10.1002/jmv.25755] [PMID] [PMCID]
57. Ye XT, Luo YL, Xia SC, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci. 2020; 24(6):3390-6.
58. Ning L, Liu L, Li W, et al. Novel Coronavirus (SARS-CoV-2) Infection in A Renal Transplant Recipient: Case Report. Am J Transplant. 2020; 20(7):1864-68. [DOI:10.1111/ajt.15897] [PMID] [PMCID]
59. Bartiromo M, Borchi B, Botta A, et al. Threatening drug-drug interaction in a kidney transplant patient with Coronavirus Disease 2019 (COVID-19). Transpl Infect Dis. 2020; 22(4):e13286. [DOI:10.1111/tid.13286] [PMID] [PMCID]
60. De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S. The interferon system: an overview. Eur J Paediatr Neurol. 2002; 6 Suppl A:A41-6. [DOI:10.1053/ejpn.2002.0573] [PMID]
61. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020; 178:104791. [DOI:10.1016/j.antiviral.2020.104791] [PMID] [PMCID]
62. Omrani AS, Saad MM, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014; 14(11):1090-5. [DOI:10.1016/S1473-3099(14)70920-X]
63. Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003; 290(24):3222-8. [DOI:10.1001/jama.290.24.3222] [PMID]
64. Arumugham VB, Rayi A. Intravenous Immunoglobulin (IVIG). Treasure Island (FL): StatPearls Publishing; 2020.
65. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005; 142(1):1-11. [DOI:10.1111/j.1365-2249.2005.02834.x] [PMID] [PMCID]
66. Xie Y, Cao S, Li Q, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020; 81(2): 318-56.. [DOI:10.1016/j.jinf.2020.03.044] [PMID] [PMCID]
67. Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 2020; 7(3):102. [DOI:10.1093/ofid/ofaa102] [PMID] [PMCID]
68. Shi H, Zhou C, He P, et al. Successful treatment of plasma exchange followed by intravenous immunogloblin in a critically ill patient with 2019 novel coronavirus infection. Int J Antimicrob Agents. 2020:105974. [DOI:10.1016/j.ijantimicag.2020.105974] [PMID] [PMCID]
69. Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis. 2005; 24(9):583-91. [DOI:10.1007/s10096-005-0004-z] [PMID] [PMCID]
70. Soo Y, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high‐dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004; 10(7):676-8. [DOI:10.1111/j.1469-0691.2004.00956.x] [PMID] [PMCID]
71. Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016; 14(2):152-7.
72. Arabi YM, Hajeer AH, Luke T, et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg Infect Dis. 2016; 22(9):1554-61. [DOI:10.3201/eid2209.151164] [PMID] [PMCID]
73. Zhao Q, He Y. Challenges of convalescent plasma therapy on COVID-19. J Clin Virol. 2020;127:104358. [DOI:10.1016/j.jcv.2020.104358] [PMID] [PMCID]
74. Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ. 2020; 368:1256. [DOI:10.1136/bmj.m1256] [PMID]
75. China puts 245 COVID-19 patients on convalescent plasma therapy. 2020; 16:55.
76. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA. 2020; 323(16):1582-89. [DOI:10.1001/jama.2020.4783] [PMID] [PMCID]
77. Olivares-Gazca JC, Priesca-Marín JM, Ojeda-Laguna M, et al. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: A Pilot Study. Rev Invest Clin. 2020;7 2(3):159-64. [DOI:10.24875/RIC.20000237] [PMID]
78. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: Old tricks for new challenges. Critical Care. 2020; 24(1). [DOI:10.1186/s13054-020-2818-6] [PMID] [PMCID]
79. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9(1):382-5. [DOI:10.1080/22221751.2020.1729069] [PMID] [PMCID]
80. Venkiteshwaran A. Tocilizumab. mAbs. 2009; 1(5):432-8. [DOI:10.4161/mabs.1.5.9497] [PMID] [PMCID]
81. Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 2020; 18(1):164. [DOI:10.1186/s12967-020-02339-3] [PMID] [PMCID]
82. Zhang C, Wu Z, Li JW, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020; 55(5):105954. [DOI:10.1016/j.ijantimicag.2020.105954] [PMID] [PMCID]
83. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020; 92(7): 814-18. [DOI:10.1002/jmv.25801] [PMID] [PMCID]
84. Schleicher GK, Lowman W, Richards GA. Case study: a patient with asthma, Covid-19 pneumonia and cytokine release syndrome treated with corticosteroids and tocilizumab. Wits J Clin Med. 2020; 2(1):47-52. [DOI:10.18772/26180197.2020.v2nSIa9] [PMCID]
85. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004; 7(4):335-45. [DOI:10.1007/s10456-004-8272-2] [PMID]
86. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 2020; 44: e40. [DOI:10.26633/RPSP.2020.40] [PMID] [PMCID]
87. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020; 1-7. [DOI:10.1007/s12015-020-09976-7] [PMID] [PMCID]
88. Bian H, Zheng Z-H, Wei D, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. medRxiv. 2020 (In Press). [DOI:10.1101/2020.03.21.20040691]
89. Lequerré T, Quartier P, Rosellini D, et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann Rheum Dis. 2008; 67(3):302-8. [DOI:10.1136/ard.2007.076034] [PMID]
90. Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020; 2(5): 276-82. [DOI:10.1002/acr2.11135] [PMID] [PMCID]
91. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020; 146(1): 110-18. [DOI:10.1016/j.jaci.2020.04.006] [PMID] [PMCID]
92. Tursi A, Angarano G, Monno L, et al. Covid-19 infection in Crohn's disease under treatment with adalimumab. Gut. 2020; 2020:321240. [DOI:10.1136/gutjnl-2020-321240] [PMID]
93. Handoll HH, Farrar MJ, McBirnie J, Tytherleigh-Strong G, Milne AA, Gillespie WJ. Heparin, low molecular weight heparin and physical methods for preventing deep vein thrombosis and pulmonary embolism following surgery for hip fractures. Cochrane Database Syst Rev. 2002; 4:Cd000305. [DOI:10.1002/14651858.CD000305] [PMCID]
94. Agnelli G, Piovella F, Buoncristiani P, et al. Enoxaparin plus compression stockings compared with compression stockings alone in the prevention of venous thromboembolism after elective neurosurgery. N Engl J Med. 1998; 339(2):80-5. [DOI:10.1056/NEJM199807093390204] [PMID]
95. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004; 126(3):188-203. https://doi.org/10.1378/chest.126.3_suppl.172S [DOI:10.1378/chest.126.3_suppl.188S] [PMID]
96. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015; 2015:507151. [DOI:10.1155/2015/507151] [PMID] [PMCID]
97. Thachil J. The versatile heparin in COVID-19. JTH. 2020; 18(5):1020-2. [DOI:10.1111/jth.14821] [PMID]
98. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. JTH. 2020; 18(5):1094-9. https://doi.org/10.1111/jth.14851 [DOI:10.1111/jth.14817]
99. Ozolina A, Sarkele M, Sabelnikovs O, et al. Activation of coagulation and fibrinolysis in acute respiratory distress syndrome: a prospective pilot study. Front Med. 2016; 3:64. [DOI:10.3389/fmed.2016.00064] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb