Volume 30, Issue 139 (March & April 2022)                   J Adv Med Biomed Res 2022, 30(139): 170-176 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Davoudimoghadam N, Daneshmand F, Azhdari M. Vitamin C Ameliorates Acrylamide-Induced Nephrotoxicity and Improves the Biochemical Parameters in Rats. J Adv Med Biomed Res 2022; 30 (139) :170-176
URL: http://journal.zums.ac.ir/article-1-6414-en.html
1- Dept. of Biology, Payame Noor University, Yazd, Iran
2- Dept. of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , azhdari_mar@yahoo.com
Abstract:   (94098 Views)

Background and Objective: Acrylamide is a highly soluble, widely- produced industrial and cytotoxic material. Some substances with antioxidant properties can ameliorate the deleterious effect of acrylamide. Vitamin C is necessary for the normal functioning of all cells and scavenging the free radicals due to the antioxidant properties. The present study was aimed to evaluate the effect of vitamin C on the biochemical parameters and histological changes in the kidney tissue damage induced by acrylamide in rats.
Materials and Methods: Forty rats were randomly divided into four groups (n=10): 1) the control group, 2) acrylamide group, 3) vitamin C group, and 4) acrylamide + vitamin C group. Histopathologic assessment (by Hematoxylin and Eosin (H& E) staining of the kidney tissue) was performed and biochemical parameters (serum malondialdehyde, total antioxidant capacity (TAC), urea, and creatinine) were measured.
Results: There was a significant enhancement in the serum urea, creatinine, and malondialdehyde levels in the acrylamide group compared to the other groups (P < 0.001). Serum TAC increased in the vitamin C group compared to the acrylamide + vitamin C and acrylamide groups (P ≤ 0.001).
Conclusion: The present study showed that chronic consumption of acrylamide can lead to pathological changes in the kidney tissue as well as unfavorable alteration in serum urea, creatinine, TAC, and MDA levels. Concurrent vitamin C consumption had a significant preventive effect on the aforementioned parameters. Therefore, vitamin C can play a protective and antioxidant role in decreasing the toxic effects of acrylamide in rat kidneys.

Full-Text [PDF 543 kb]   (48429 Downloads) |   |   Full-Text (HTML)  (1531 Views)  

✅ The present study showed that chronic consumption of acrylamide can lead to pathological changes in kidney tissue as well as unfavorable alternation in serum urea, creatinine, TAC, and MDA levels. Concurrent vitamin C consumption had a significant preventive effect on the aforementioned parameters. Therefore, vitamin C can play a protective and antioxidant role in decreasing the toxic effects of acrylamide in rat kidneys. 


Type of Study: Original Article | Subject: Clinical medicine
Received: 2021/01/31 | Accepted: 2021/05/4 | Published: 2022/01/31

References
1. Besaratinia A, Pfeifer GP. A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis. 2007;28(3):519-28. [DOI:10.1093/carcin/bgm006] [PMID]
2. Kermani-Alghoraishi M, Anvari M, Talebi AR, Amini-Rad O, Ghahramani R, Miresmaili SM. The effects of acrylamide on sperm parameters and membrane integrity of epididymal spermatozoa in mice. Europe J Obstet Gynecol Reproduct Biol. 2010;153(1):52-5. [DOI:10.1016/j.ejogrb.2010.07.008] [PMID]
3. Taeymans D, Wood J, Ashby P, et al. A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit Rev Food Sci Nutr. 2004;44(5):323-47. [DOI:10.1080/10408690490478082] [PMID]
4. Sabik L, Moustafa GG, Sharkawi NI, Sabik LM. Acrylamide-induced genotoxic, biochemical and pathological perturbations in male rats liver. J Am Sci. 2011;7(1):1092-6.
5. Lai Sm, Gu Zt, Zhao Mm, et al. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regenerat Res. 2017;12(10):1648. [DOI:10.4103/1673-5374.217345] [PMID] [PMCID]
6. Eman M, Amany Y. Some studies on acrylamide intoxication in male albino rats. Egypt J Compar Pathol Clin Pathol. 2008;21(4).
7. Teodor V, Cuciureanu M, Filip C, Zamosteanu N, Cuciureanu R. Protective effects of selenium on acrylamide toxicity in the liver of the rat. Effects on the oxidative stress. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 2011;115(2):612-8.
8. Atef H, Attia GM, Rezk HM, El-Shafey M. Effect of vitamin E on biochemical and ultrastructural changes in acrylamide-induced renal toxicity in rats. Int J Sci Report. 2017;3(5):134-43. [DOI:10.18203/issn.2454-2156.IntJSciRep20171999]
9. Tozan-Beceren A, Sehirli AO, Eksioglu-Demiralp E, Sener G, Omurtag GZ. Melatonin protects against acrylamideinduced oxidative tissue damage in rats. Marmara Pharmaceut J. 2012;16(3):213-21. [DOI:10.12991/201216401]
10. Mahmood SA, Amin KA, Salih SF. Effect of acrylamide on liver and kidneys in albino wistar rats. Int J Curr Microbiol App Sci. 2015;4(5):434-44.
11. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Org J. 2012;5(1):9-19. [DOI:10.1097/WOX.0b013e3182439613] [PMID] [PMCID]
12. Kim EJ, Won R, Sohn JH, et al. Anti-oxidant effect of ascorbic and dehydroascorbic acids in hippocampal slice culture. Biochem Biophysic Res Communicat. 2008;366(1):8-14. [DOI:10.1016/j.bbrc.2007.11.050] [PMID]
13. Rahangadale S, Kurkure N, Prajapati B, Hedaoo V, Bhandarkar AG. Neuroprotective effect of vitamin e supplementation in wistar rat treated with acrylamide. Toxicol Int. 2012;19(1):1. [DOI:10.4103/0971-6580.94505] [PMID] [PMCID]
14. Rahangadale S, Jangir BL, Patil M, et al. Evaluation of protective effect of vitamin e on acrylamide induced testicular toxicity in wister rats. Toxicol Int. 2012;19(2):158. [DOI:10.4103/0971-6580.97216] [PMID] [PMCID]
15. Dortaj H, Yadegari M, Abad MHS, Sarcheshmeh AA, Anvari M. Stereological method for assessing the effect of vitamin C administration on the reduction of acrylamide-induced neurotoxicity. Basic Clin Neurosci. 2018;9(1):27. [DOI:10.29252/nirp.bcn.9.1.27] [PMID] [PMCID]
16. Zeb A, Ullah F. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. Journal of analytical methods in chemistry. 2016;2016. [DOI:10.1155/2016/9412767] [PMID] [PMCID]
17. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect. 2014;122(3):269. [DOI:10.1289/ehp.1307294] [PMID] [PMCID]
18. Rivadeneyra-Domínguez E, Becerra-Contreras Y, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Reports. 2018;5:1124-8. [DOI:10.1016/j.toxrep.2018.11.006] [PMID] [PMCID]
19. Rajeh NA, Al-Dhaheri NM. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats. Saudi Medi J. 2017;38(2):132. [DOI:10.15537/smj.2017.2.16049] [PMID] [PMCID]
20. Salman A, El-Ghazouly DE-S, El Beltagy M. Role of ascorbic acid versus silymarin in amelioration of hepatotoxicity induced by acrylamide in adult male albino rats: Histological and immunohistochemical study. Int J Morphol. 2020;38(6). [DOI:10.4067/S0717-95022020000601767]
21. Rodriguez-Ramiro I, Ramos S, Bravo L, Goya L, Martin MA. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J Nutr Biochem. 2011;22(12):1186-94. [DOI:10.1016/j.jnutbio.2010.10.005] [PMID]
22. Ghorbel I, Elwej A, Fendri N, et al. Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Renal Failure. 2017;39(1):236-45. [DOI:10.1080/0886022X.2016.1256320] [PMID] [PMCID]
23. Alturfan AA, Tozan-Beceren A, Şehirli AÖ, Demiralp E, Şener G, Omurtag GZ. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Molec Biol Report. 2012;39(4):4589-96. [DOI:10.1007/s11033-011-1249-5] [PMID]
24. Siahkoohi S, Anvari M, Akhavan Tafti M, Hosseini-sharifabad M. The effects of vitamin E on the liver integrity of mice fed with acrylamide diet. Iran J Pathol. 2014;9(2):89-98.
25. Zamani E, Shokrzadeh M, Fallah M, Shaki F. A review of acrylamide toxicity and its mechanism. Pharmaceut Biomed Res. 2017;3(1):1-7. [DOI:10.18869/acadpub.pbr.3.1.1]
26. Exon J. A review of the toxicology of acrylamide. J Toxicol Environ Health, Part B. 2006;9(5):397-412. [DOI:10.1080/10937400600681430] [PMID]
27. Kahkeshani N, Saeidnia S, Abdollahi M. Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. J Food Sci Technol. 2015;52(6):3169-86. [DOI:10.1007/s13197-014-1558-5] [PMID] [PMCID]
28. Jin C, Wu X, Zhang Y. Relationship between antioxidants and acrylamide formation: A review. Food Res Int. 2013;51(2):611-20. [DOI:10.1016/j.foodres.2012.12.047]
29. Hong Y, Nan B, Wu X, Yan H, Yuan Y. Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sci. 2019;231:116550. [DOI:10.1016/j.lfs.2019.116550] [PMID]
30. Cheng KW, Zeng X, Tang YS, et al. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chem Res Toxicol. 2009;22(8):1483-9. [DOI:10.1021/tx9001644] [PMID]
31. Hamzalıoğlu A, Mogol BA, Lumaga RB, Fogliano V, Gökmen V. Role of curcumin in the conversion of asparagine into acrylamide during heating. Amino Acids. 2013;44(6):1419-26. [DOI:10.1007/s00726-011-1179-5] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb