Volume 33, Issue 160 (September & October 2025)                   J Adv Med Biomed Res 2025, 33(160): 188-197 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammed A H, Aouda M A, Alyasiri H M. Relationship between Catecholamines Levels and Branched Chain Amino Acids in Patients with Chronic Kidney Disease in Thi-Qar Province, Iraq. J Adv Med Biomed Res 2025; 33 (160) :188-197
URL: http://journal.zums.ac.ir/article-1-7816-en.html
1- Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64001, Iraq , al.hu_ch@utq.edu.iq
2- Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64001, Iraq
3- Department of Physiology, College of Medicine, University of Thi-Qar, Thi-Qar, 64001, Iraq
Abstract:   (214 Views)

Background & Objective: Chronic kidney disease (CKD) is a major global health issue with increasing morbidity and mortality. Early stages are often asymptomatic, delaying diagnosis and treatment. This study aimed to evaluate the relationship between branched-chain amino acids (BCAAs) and catecholamine hormones-dopamine, epinephrine, and norepinephrine in CKD patients in Thi-Qar province, Iraq.
Materials & Methods: This case-control study was conducted on 88 patients with CKD and 40 healthy controls. Blood samples were collected, and serum levels of BCAAs (valine, leucine, and isoleucine) and catecholamines were measured by ELISA method and relevant kits. Data were analyzed using SPSS version 11.5. The Mann-Whitney U test compared group means, and Spearman’s rank correlation assessed associations between variables. Statistical significance was defined as P<0.05.
Results: BCAA concentrations were significantly lower in CKD patients compared with controls (35.53 ± 3.37 μg/ml vs 61.06 ± 5.39 μg/ml; P<0.001). Catecholamine levels were also significantly reduced in CKD patients: dopamine (20.22 ± 8.18 pg/ml vs 48.80 ± 13.74 pg/ml), epinephrine (0.22 ± 0.072 pg/ml vs 0.48 ± 0.13 pg/ml), and norepinephrine (1.21 ± 0.23 pg/ml vs 2.31 ± 0.40 pg/ml) (all P<0.001). Positive correlations were observed between BCAA and dopamine (r = 0.11), epinephrine (r = 0.22), and norepinephrine (r = 0.22).
Conclusion: The findings indicate that decreased BCAA levels in chronic kidney disease (CKD) may contribute to impaired catecholamine synthesis. Monitoring these metabolic and neurochemical biomarkers could enhance disease assessment and management. Early nutritional interventions such as targeted amino acid supplementation may offer therapeutic benefits and merit further clinical investigation.

     
Type of Study: Original Research Article | Subject: Clinical Medicine
Received: 2025/08/9 | Accepted: 2025/10/29 | Published: 2025/11/11

References
1. Alan SLY, Glenn MC, Valerie L, Philip AM, Karl S, Maarten WT. Brenner and Rector's The Kidney, 2-Volume Set. 11th Ed. 2019. Cambridge, MA, U.S.: Elsevier Inc.
2. Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther. 2023;8(1):345. [DOI:10.1038/s41392-023-01569-3] [PMID] [PMCID]
3. Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflüg Arch Eur J Physiol. 2022;474(8):919-34. [DOI:10.1007/s00424-022-02696-6] [PMID] [PMCID]
4. Tunnicliffe DJ, Bateman S, Arnold‐Chamney M, Dwyer KM, Howell M, Gebadi A, et al. Recommendations for culturally safe clinical kidney care for First Nations Australians: a guideline summary. Med J Aust. 2023;219(8):374-85. [DOI:10.5694/mja2.52114] [PMID] [PMCID]
5. Alwan NH, Faraj H. Estimation of NLRP3 Inflammasome Role and some Biochemical Parameters in Patients with Chronic Kidney Diseases (CKD). Univ Thi-Qar J Sci. 2023;10(2):16-9. [DOI:10.32792/utq/utjsci/v10i2.1063]
6. Pasupulati AK, Kilari S, Sahay M. Endocrine abnormalities and renal complications. Front Endocrinol. 2023;14:1274669. [DOI:10.3389/fendo.2023.1274669] [PMID] [PMCID]
7. Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA. Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol. 2020;16(1):51-64. [DOI:10.1038/s41581-019-0191-y] [PMID]
8. Cusumano AM, Tzanno-Martins C, Rosa-Diez GJ. The glomerular filtration rate: from the diagnosis of kidney function to a public health tool. Front Med. 2021;8:769335. [DOI:10.3389/fmed.2021.769335] [PMID] [PMCID]
9. Hassan SA, Sheayria FH, Shaheen FA. Chronic Kidney Disease of Unknown Etiology: A Single-center Cross-sectional Study. Saudi J Kidney Dis Transpl. 2023;34(6):625-33.
10. Miller WG, Kaufman HW, Levey AS, Straseski JA, Wilhelms KW, Yu HY, et al. National Kidney Foundation Laboratory Engagement Working Group recommendations for implementing the CKD-EPI 2021 race-free equations for estimated glomerular filtration rate: practical guidance for clinical laboratories. Clin Chem. 2022;68(4):511-20. [DOI:10.1093/clinchem/hvab278] [PMID]
11. Al-khafaji N, Al-khafaji BY, Al-Omar DK. Assessment the Effects of Heavy Elements on Some Hematological Parameter in CKD Patients Undergoing Hemodialysis in Thi-Qar Province/Iraq. Univ Thi-Qar J Sci. 2024;11(2):54-8. [DOI:10.32792/utq/utjsci/v11i2.1192]
12. Fletcher BR, Damery S, Aiyegbusi OL, Anderson N, Calvert M, Cockwell P, et al. Symptom burden and health-related quality of life in chronic kidney disease: a global systematic review and meta-analysis. PLoS Med. 2022;19(4):e1003954. [DOI:10.1371/journal.pmed.1003954] [PMID] [PMCID]
13. Bosi A, Xu Y, Gasparini A, Wettermark B, Barany P, Bellocco R, et al. Use of nephrotoxic medications in adults with chronic kidney disease in Swedish and US routine care. Clin Kidney J. 2022;15(3):442-51. [DOI:10.1093/ckj/sfab210] [PMID] [PMCID]
14. Centers for Disease Control and Prevention (CKD). Chronic Kidney Disease in the United States, 2021. 2022. Published by US Department of Health and Human Services. Available from: [https://nccd.cdc.gov/CKD/Documents/Chronic-Kidney-Disease-in-the-US-2021-h.pdf]
15. Gummidi B, John O, Ghosh A, Modi GK, Sehgal M, Kalra OP, et al. A systematic study of the prevalence and risk factors of CKD in Uddanam, India. Kidney Int Rep. 2020;5(12):2246. [DOI:10.1016/j.ekir.2020.10.004] [PMID] [PMCID]
16. Mousa H, Jabar DA. The Immunological Role of Interleukin-10 in Chronic Renal Disease Patients of Thi-Qar Province. Univ Thi-Qar J Sci. 2024;11(2):147-50. [DOI:10.32792/utq/utjsci/v11i2.1266]
17. Borg R, Carlson N, Søndergaard J, Persson F. The growing challenge of chronic kidney disease: an overview of current knowledge. Int J Nephrol. 2023;2023(1):9609266. [DOI:10.1155/2023/9609266] [PMID] [PMCID]
18. Francis A, Harhay MN, Ong AC, Tummalapalli SL, Ortiz A, Fogo AB, et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol. 2024;20(7):473-85. [DOI:10.1038/s41581-024-00820-6] [PMID]
19. Bossola M, Arena M, Urciuolo F, Antocicco M, Pepe G, Calabrò GE, et al. Fatigue in kidney transplantation: a systematic review and meta-analysis. Diagnostics. 2021;11(5):833. [DOI:10.3390/diagnostics11050833] [PMID] [PMCID]
20. Sobolewska J, Żak Z, Monia-Tutur K, Wojciechowska-Luźniak A, Witek P, Niemczyk S. Zaburzenia endokrynologiczne w przewlekłej chorobie nerek. Pediatr Fam Med. 2022;18(3):209-18. [DOI:10.15557/PiMR.2022.0031]
21. Kashat HH, Ali BR. The Role of Some Hormones and Interleukins and Their Relationship with Vitamin D3 Concentration in Osteoporosis Patients. Univ Thi-Qar J Sci. 2021;8(1):72-6.
22. Xiang W, Wang X, Li L, Zeng J, Lu H, Wang Y. Unveiling catecholamine dynamics in cardiac health and disease: Mechanisms, implications, and future perspectives. Int J Drug Discov Pharmacol. 2023:12-22. [DOI:10.53941/ijddp.2023.100012]
23. Patel KP, Katsurada K, Zheng H. Cardiorenal syndrome: the role of neural connections between the heart and the kidneys. Circ Res. 2022;130(10):1601-17. [DOI:10.1161/CIRCRESAHA.122.319989] [PMID] [PMCID]
24. N'Guetta PE, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, et al. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. Cell Rep. 2024;43(10):114860. [DOI:10.1016/j.celrep.2024.114860] [PMID] [PMCID]
25. Hosseini-Dastgerdi H, Kharazmi F, Pourshanazari AA, Nematbakhsh M. Renal denervation influences angiotensin II types 1 and 2 receptors. Int J Nephrol. 2022;2022(1):8731357. [DOI:10.1155/2022/8731357] [PMID] [PMCID]
26. Rao S, Zhang Y, Xie S, Cao H, Zhang Z, Yang W. Dietary intake of branched-chain amino acids (BCAAs), serum BCAAs, and cardiometabolic risk markers among community-dwelling adults. Eur J Nutr. 2024;63(5):1835-45. [DOI:10.1007/s00394-024-03432-9] [PMID]
27. Zeng SL, Li SZ, Xiao PT, Cai YY, Chu C, Chen BZ, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci Adv. 2020;6(1):eaax6208. [DOI:10.1126/sciadv.aax6208] [PMID] [PMCID]
28. Namkung SM, Choi JS, Park JH, Yang MG, Lee MW, Kim SW. Detection of dopamine and serotonin by competitive enzyme-linked immunosorbent assay. Korean J Clin Lab Sci. 2017;49(3):220-6. [DOI:10.15324/kjcls.2017.49.3.220]
29. Mahemuti N, Zou J, Liu C, Xiao Z, Liang F, Yang X. Urinary albumin-to-creatinine ratio in normal range, cardiovascular health, and all-cause mortality. JAMA Netw Open. 2023;6(12):e2348333. [DOI:10.1001/jamanetworkopen.2023.48333] [PMID] [PMCID]
30. Kushwaha R, Vardhan PS, Kushwaha PP. Chronic kidney disease interplay with comorbidities and carbohydrate metabolism: A review. Life. 2023;14(1):13. [DOI:10.3390/life14010013] [PMID] [PMCID]
31. Espina S, Gonzalez-Irazabal Y, Sanz-Paris A, Lopez-Yus M, Garcia-Sobreviela MP, del Moral-Bergos R, et al. Amino acid profile in malnourished patients with liver cirrhosis and its modification with oral nutritional supplements: implications on minimal hepatic encephalopathy. Nutrients. 2021;13(11):3764. [DOI:10.3390/nu13113764] [PMID] [PMCID]
32. Dimou A, Tsimihodimos V, Bairaktari E. The critical role of the branched chain amino acids (BCAAs) catabolism-regulating enzymes, branched-chain aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), in human pathophysiology. Int J Mol Sci. 2022;23(7):4022. [DOI:10.3390/ijms23074022] [PMID] [PMCID]
33. Cheng TC, Huang SH, Kao CL, Hsu PC. Muscle wasting in chronic kidney disease: mechanism and clinical implications-a narrative review. Int J Mol Sci. 2022;23(11):6047. [DOI:10.3390/ijms23116047] [PMID] [PMCID]
34. Hsu CC, Sun CY, Tsai CY, Chen MY, Wang SY, Hsu JT, et al. Metabolism of proteins and amino acids in critical illness: from physiological alterations to relevant clinical practice. J Multidiscip Healthc. 2021:1107-17. [DOI:10.2147/JMDH.S306350] [PMID] [PMCID]
35. Kumar MA, Bitla AR, Raju KV, Manohar SM, Kumar VS, Narasimha SR. Branched chain amino acid profile in early chronic kidney disease. Saudi J Kidney Dis Transpl. 2012;23(6):1202-7.
36. de Klerk JA, Bijkerk R, Beulens JW, van Zonneveld AJ, Muilwijk M, Harms PP, et al. Branched‐chain amino acid levels are inversely associated with incident and prevalent chronic kidney disease in people with type 2 diabetes. Diabetes Obes Metab. 2024;26(5):1706-13. [DOI:10.1111/dom.15475] [PMID]
37. Cano NJ, Fouque D, Leverve XM. Application of branched-chain amino acids in human pathological states: renal failure. J Nutr. 2006;136(1):299S-307S. [DOI:10.1093/jn/136.1.299S] [PMID]
38. Seshadri Reddy V, Srinivasa Rao PV, Bitla A, Kumar S, Suchitra MM, Reddy P. Effect Of A Dialysis Session On Plasma Branched Chain Aminio Acids In Hemodialysis Patients. Nat Preced. 2011:1. [DOI:10.1038/npre.2011.6475.1]
39. Khalil B, Rosani A, Warrington SJ. Physiology, Catecholamines. [Updated 205 Oct 11]. In: StatPearls [Internet]. Tampa, FL, United States:StatPearls Publishing. 2025 Jan. Available from: [https://www.ncbi.nlm.nih.gov/books/NBK507716/]
40. Kapur P, Ghosh P, Nath NG. Stability, controllability and observability of arterial circulation. J Theor Biol. 1976;61(1):15-9. [DOI:10.1016/0022-5193(76)90100-4] [PMID]
41. Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, et al. Adrenal insufficiency. Nat Rev Dis Primers. 2021;7(1):19. [DOI:10.1038/s41572-021-00252-7] [PMID]
42. van Ham WB, Cornelissen CM, van Veen TA. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol. 2022;236(3):e13888. [DOI:10.1111/apha.13888] [PMID] [PMCID]
43. Bo T, Fujii J. Primary roles of branched chain amino acids (BCAAs) and their metabolism in physiology and metabolic disorders. Molecules. 2024;30(1):56. [DOI:10.3390/molecules30010056] [PMID] [PMCID]
44. Zoccali C, Mallamaci F, Kanbay M, Tuttle KR, Kotanko P, De Caterina R, et al. The autonomic nervous system and inflammation in chronic kidney disease. Nephrol Dial Transplant. 2025:gfaf020. [DOI:10.1093/ndt/gfaf020] [PMID]
45. Wisniewska M, Serwin N, Dziedziejko V, Marchelek-Mysliwiec M, Dołegowska B, Domanski L, et al. Renalase in haemodialysis patients with chronic kidney disease. J Clin Med. 2021;10(4):680. [DOI:10.3390/jcm10040680] [PMID] [PMCID]
46. Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol. 2023;14:1271521. [DOI:10.3389/fendo.2023.1271521] [PMID] [PMCID]
47. Esler M. Renal catecholamine metabolism. Miner Electrolyte Metab. 1989;15(1-2):16-23.
48. żek A K. Dopamine-Beta-Hydroxylase Activity and Catecholamine Levels in the Plasma of Patients with Renal Failure. Nephron. 24(4):170-3. [DOI:10.1159/000181710] [PMID]
49. Kuczera P, Adamczak M, Wiecek A. Wiecek A. Endocrine Abnormalities in Patients with Chronic Kidney Disease. Prilozi. 2015;36(2):109-18. [DOI:10.1515/prilozi-2015-0059] [PMID]
50. Heryć R, Cecerska-Heryć E, Serwin N, Stodolak P, Goszka M, Polikowska A, et al. Renalase, dopamine, and norepinephrine as markers for the development of hypertension in CKD patients. BMC Nephrol. 2025;26(1):200. [DOI:10.1186/s12882-025-04114-2] [PMID] [PMCID]
51. Liu K, Borreggine R, Gallart-Ayala H, Ivanisevic J, Marques-Vidal P. Circulating Levels of Branched-Chain Amino Acids Are Associated with Diet: A Cross-Sectional Analysis. Nutrients. 2025;17(9):1471. [DOI:10.3390/nu17091471] [PMID] [PMCID]
52. Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem. 1999;68:355-81. [DOI:10.1146/annurev.biochem.68.1.355] [PMID]
53. Szigetvari PD, Patil S, Birkeland E, Kleppe R, Haavik J. The effects of phenylalanine and tyrosine levels on dopamine production in rat PC12 cells. Implications for treatment of phenylketonuria, tyrosinemia type 1 and comorbid neurodevelopmental disorders. Neurochem Int. 2023;171:105629. [DOI:10.1016/j.neuint.2023.105629] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb