1. Klein-Schwartz W. Abuse and toxicity of methylphenidate. Curr Opinion Pediatr. 2002. 14(2): 219-23. [
DOI:10.1097/00008480-200204000-00013]
2. Yano M , Steiner H. Methylphenidate and cocaine: the same effects on gene regulation? Trend Pharmacol Sci. 2007; 28(11): 588-96. [
DOI:10.1016/j.tips.2007.10.004]
3. Scahill L, Carroll D, Burke K. Methylphenidate: mechanism of action and clinical update. J Child Adolescent Psychiatr Nur. 2004; 17(2): 85-86. [
DOI:10.1111/j.1744-6171.2004.00085.x]
4. Logan B. Methamphetamine-effects on human performance and behavior. Forensic Sci Rev, 2002. 14(1): 133-51.
5. Kim Y , Teylan M, Baron M, Sands A, Nairn A, Greengard P .Methylphenidate-induced dendritic spine formation and ΔFosB expression in nucleus accumbens. Proc Natl Acad Sci. 2009. 106(8): 2915-20. [
DOI:10.1073/pnas.0813179106]
6. Klein-Schwartz W, McGRATH J. Poison centers' experience with methylphenidate abuse in pre-teens and adolescents. J Am Acad Child Adoles Psychiatr. 2003. 42(3): 288-94. [
DOI:10.1097/00004583-200303000-00008]
7. Carlezon Jr, Mague W, Andersen SL. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatr. 2003;54(12): 1330-37. [
DOI:10.1016/j.biopsych.2003.08.020]
8. Vendruscolo L , Izídio G, Takahashi R, Ramos A .Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol. 2008; 19(1): 21-27. [
DOI:10.1097/FBP.0b013e3282f3cfbe]
9. Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006; 8(2): E413-E418. [
DOI:10.1007/BF02854914]
10. Martins M , Reinke A, Petronilho F, Gomes K, Dal-Pizzol F, Quevedo J.Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res. 2006. 1078(1): 189-97. [
DOI:10.1016/j.brainres.2006.01.004]
11. Solleveld M, Schrantee A, Puts N, Reneman L, Lucassen P.Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients. NeuroImage. 2017 15: 812-18. [
DOI:10.1016/j.nicl.2017.06.003]
12. Jia Cheng , Zhe Xiong , Lara J Duffney , et al. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Biol Psychiatry. 2014. 76(12): 953-62. [
DOI:10.1016/j.biopsych.2014.04.003]
13. Haenisch B, Bönisch H. Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Therap. 2011; 129(3): 352-68. [
DOI:10.1016/j.pharmthera.2010.12.002]
14. Gronier B. In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors. Europ Neuropsychopharmacol. 2011. 21(2): 192-204. [
DOI:10.1016/j.euroneuro.2010.11.002]
15. Rozas C. Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of β-adrenergic and D1/D5 receptors. Neuropharmacol. 2015. 99: p. 15-27. [
DOI:10.1016/j.neuropharm.2015.07.003]
16. Furini C, Behling J, Zinn C, Zanini M.Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behav Brain Res. 2017. 326: 303-6. [
DOI:10.1016/j.bbr.2017.03.027]
17. Gamo N, Wang M, Arnsten A. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. J Am Acad Child Adoles Psychiatr. 2010. 49(10): 1011-23. [
DOI:10.1016/j.jaac.2010.06.015]
18. Gill KE, Beveridge T, Smith HR, Porrino LJ.The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats. Brain Res. 2013; 1527: 67-78. [
DOI:10.1016/j.brainres.2013.06.021]
19. Staff N. Guidelines for the care and use of mammals in neuroscience and behavioral research. 2003: National Academies Press.
20. Gould T, Dao D, Kovacsics C. The open field test, in Mood and anxiety related phenotypes in mice. 2009, Springer. 1-20. [
DOI:10.1007/978-1-60761-303-9_1]
21. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD.The mouse forced swim test. J Visual Experiment. 2012(59): e3638. [
DOI:10.3791/3638]
22. Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. J Visual Experiment, 2008(22): e1088. [
DOI:10.3791/1088]
23. Challman TD, Lipsky J. Methylphenidate: its pharmacology and uses. in Mayo Clinic Proceedings. 2000. Elsevier. [
DOI:10.4065/75.7.711]
24. Tagaya H. Methylphenidate: pharmacology, indication and potential of abuse. Nihon rinsho. Japan J Clin Med, 2010. 68(8): 1550-55.
25. Huss M, Lehmkuhl U. Methylphenidate and substance abuse: a review of pharmacology, animal, and clinical studies. J Attention Disorders. 2001. 6: S65-71. [
DOI:10.1177/070674370200601S09]
26. Iliou T, Casta P, Lequeux J, Pochard L, Frauger E, Spadari M, Micallef J.Venlafaxine Abuse in a Patient With a History of Methylphenidate Abuse: A Case Report. J Clin Psychopharmacol. 2019. 39(2): 172-7 [
DOI:10.1097/JCP.0000000000001011]
27. Stevens T, Sangkuhl K, Brown JT, Altman RB, Klein TE.PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenetics Genomics. 2019. 29(6): 136-54. [
DOI:10.1097/FPC.0000000000000376]
28. Miller EM, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE.Chronic methylphenidate alters tonic and phasic glutamate signaling in the frontal cortex of a freely-moving rat model of ADHD. Neurochem Res. 2019. 44(1): 89-101 [
DOI:10.1007/s11064-018-2483-1]
29. Bartl J, Link P, Schlosser C, et al. Effects of methylphenidate: the cellular point of view. ADHD Attention Deficitand Hyperactivity Disorders. 2010. 2(4): 225-32. [
DOI:10.1007/s12402-010-0039-6]
30. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T.Effects of acute and chronic administrationof atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem. 2010. 114(1): 259-70. [
DOI:10.1111/j.1471-4159.2010.06750.x]
31. Levin ED, Sledge D, Roach S, Petro A, Donerly S, Linney E.Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol Teratol. 2011. 33(6):p. 668-673. [
DOI:10.1016/j.ntt.2011.06.004]
32. Motaghinejad M, Motevalian M. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol. 2016. 784: 181-91. [
DOI:10.1016/j.ejphar.2016.04.036]
33. Zhang CL, Feng ZJ, Liu Y,et al.Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action. PloS one, 2012. 7(12): p. e51910. [
DOI:10.1371/journal.pone.0051910]
34. Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABAA and Alpha2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci. 2017. 179: 37-53. [
DOI:10.1016/j.lfs.2017.01.002]
35. Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM.Hippocampal NMA receptors and anxiety: at the interface between cognition and emotion. Europ J Pharmacol. 2010. 626(1): 49-56. [
DOI:10.1016/j.ejphar.2009.10.014]
36. Racagni G, Popoli M. The pharmacological properties of antidepressants. Int Clin Psychopharmacol. 2010. 25(3): 117-31. [
DOI:10.1097/YIC.0b013e3283311acd]
37. Urban KR, Waterhouse BD, Gao WJ. Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons. Biol Psychiatr. 2012. 72(10): 880-88. [
DOI:10.1016/j.biopsych.2012.04.018]
38. Devos D, Moreau C, Delval A, Dujardin K, Defebvre L, Bordet R. Methylphenidate. CNS Drugs. 2013. 27(1): 1-14. [
DOI:10.1007/s40263-012-0017-y]