Volume 28, Issue 127 (March & April 2020)                   J Adv Med Biomed Res 2020, 28(127): 105-110 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Charkhi P, Haghshenas M R, Mirzaei B, Davoodi L, Norouzi Bazgir Z, Goli H R. Comparison of the Effect of Phenylalanine Arginine Beta Naphthylamide (PAβN) and Curcumin on Minimum Inhibitory Concentration of Aminoglycosides on Pseudomonas aeruginosa Clinical Isolates. J Adv Med Biomed Res 2020; 28 (127) :105-110
URL: http://journal.zums.ac.ir/article-1-5935-en.html
1- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
2- Dept. of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
3- Dept. of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
4- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
5- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran , goli59@gmail.com
Abstract:   (146678 Views)

Background and Objective: Efflux pump inhibitors (EPIs) can block efflux pumps and are helpful in potentiating the activity of aminoglycosides against Pseudomonas aeruginosa. The present study compared the effects of phenylalanine-arginine beta naphthylamide (PAβN) and curcumin on aminoglycoside minimum inhibitory concentration (MIC) on Pseudomonas aeruginosa clinical isolates.
Materials and Methods: For this descriptive-analytical study, 100 clinical isolates of Pseudomonas aeruginosa were collected and identified by differential diagnostic tests. The MICs of amikacin, gentamicin, and tobramycin were evaluated before and after adding EPIs using a micro-broth dilution test.
Results: The bacteria were isolated from different types of samples, including urine (26 isolates), sputum (37 isolates), ulcers (20 isolates), catheters (eight isolates), blood (five isolates), feces (two isolates), and eyes (two isolates). Overall, 60% of the isolates were obtained from males (mean age = 47.85), and 40% from females (mean age = 44.76).
In the MIC test, 11 (25.5%), 15 (34.8%), and 18 (41.8%) isolates were resistant to amikacin, gentamicin, and tobramycin, respectively. Significant reductions in the MICs of amikacin, gentamicin, and tobramycin were observed after adding curcumin in 54-100% of aminoglycoside-resistant isolates, while fewer changes in the MICs of aminoglycosides were seen against these clinical isolates after adding PAβN (36-55%).
Conclusion: Curcumin and PAβN can potentiate the effect of aminoglycosides on clinical isolates of Pseudomonas aeruginosa and change their susceptibility pattern due to efflux pump inhibition. However, our outcomes detected that curcumin was more effective than the PAβN against the aminoglycoside-resistant isolates of P. aeruginosa.

Full-Text [PDF 338 kb]   (155114 Downloads) |   |   Full-Text (HTML)  (2855 Views)  

✅ Curcumin and PAβN can potentiate the effect of aminoglycosides on clinical isolates of Pseudomonas aeruginosa and change their susceptibility pattern due to efflux pump inhibition. However, our outcomes detected that curcumin was more effective than the PAβN against the aminoglycoside-resistant isolates of P. aeruginosa.


Type of Study: Original Article | Subject: Medical Biology
Received: 2019/10/2 | Accepted: 2020/01/25 | Published: 2020/03/1

References
1. Jones RN, Stilwell MG, Rhomberg PR, Sader HS. Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007). DiagnMicrobiol Infect Dis. 2009;65(3):331-4. [DOI:10.1016/j.diagmicrobio.2009.06.022]
2. Gailienė G, Pavilonis A, Kareivienė V. The peculiarities of Pseudomonas aeruginosa resistance to antibiotics and prevalence of serogroups. Medicina. 2007;43(1):36. [DOI:10.3390/medicina43010005]
3. Kashfi M, Hashemi A, Eslami G, Amin MS, Tarashi S, Taki E. The prevalence of aminoglycoside-modifying enzyme genes among Pseudomonas aeruginosa strains isolated from burn patients. Arch Clin Infect Dis. 2017;12(1): e40896; 10.5812/archcid.40896. [DOI:10.5812/archcid.40896]
4. Hassett D, Charniga L, Bean K, Ohman D, Cohen M. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun. 1992;60(2):328-36. [DOI:10.1128/IAI.60.2.328-336.1992]
5. Poole K. Efflux-mediated antimicrobial resistance. J AntimicrobChemother. 2005;56(1):20-51. [DOI:10.1093/jac/dki171]
6. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J App Microbiol. 2002;92:55S-64S. [DOI:10.1046/j.1365-2672.92.5s1.8.x]
7. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J MolMicrobiol Biotech. 2001;3(2):255-64.
8. Forge A, Schacht J. Aminoglycoside antibiotics. Audiology and Neurotology. 2000;5(1):3-22. [DOI:10.1159/000013861]
9. Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):479-87. [DOI:10.1128/AAC.49.2.479-487.2005]
10. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351-68. [DOI:10.2165/00003495-200767030-00003]
11. Pannek S, Higgins PG, Steinke P, Jonas D, Akova M, Bohnert JA, et al. Multidrug efflux inhibition in Acinetobacterbaumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-β-naphthylamide. J AntimicrobChemother. 2006;57(5):970-4. [DOI:10.1093/jac/dkl081]
12. Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic-a vision for applied use. Bioch Pharm. 2006;71(7):910-8. [DOI:10.1016/j.bcp.2005.12.008]
13. Eshra KA, Shalaby MM. Efflux pump inhibition effect of curcumin and phenylalanine arginyl β-naphthylamide (PAβN) against multidrug resistant Pseudomonas aeruginosa isolated from burn infections in Tanta University Hospitals. Egypt J Med Microbiol. 2017;38(5782):1-7. [DOI:10.12816/0046279]
14. ZorofchianMoghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int. 2014;2014: 1-12; https://doi.org/10.1155/2014/186864 [DOI:10.1155/2014/186864.]
15. Negi N, Prakash P, Gupta ML, Mohapatra TM. Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J ClinDiagn Res: JCDR. 2014;8(10): 4-8. [DOI:10.7860/JCDR/2014/8329.4965]
16. Greaves P. Bailey & Scott's Diagnostic Microbiology. J Med Microbiol. 1991;35(2):125-6. [DOI:10.1099/00222615-35-2-125b]
17. CLSI. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: Twenty-eighth informational supplement, M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute (CLSI) 2018; vol. 35.
18. Beig M, Arabestani MR. Investigation of MexAB-OprM efflux pump gene expression in clinical isolates of Pseudomonas aeruginosa isolated from Intensive Care Unit. Iran J Med Microbiol. 2019;13(2):142-50. [DOI:10.30699/ijmm.13.2.142]
19. Zarei O, Shokoohizadeh L, Hossainpour H, Alikhani MY. Molecular analysis of Pseudomonas aeruginosa isolated from clinical, environmental and cockroach sources by ERIC-PCR. BMC Res Notes. 2018;11(1):1-7. [DOI:10.1186/s13104-018-3765-z]
20. Sharifi H, Pouladfar G, Shakibaie MR, Pourabbas B, Mardaneh J, Mansouri S. Prevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran. Iran J Basic Med Sci. 2019;22(7):806-12.
21. Goli HR, Nahaei MR, Rezaee MA, et al. Prevalence and molecular characterization of Class 1 integrons among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Mol Genet MicrobiolVirol. 2017;32(2):109-15. [DOI:10.3103/S0891416817020057]
22. AfsharYavari S, Rota S, Caglar K, Fidan I. Efflux pump inhibitors effect on the minimum inhibitory concentration of Benzalkonium Chloride and Chlorhexidine in Acinetobacter baumannii strains isolated from hospitalized inpatients in Gazi hospital, Ankara. J UrmiaUniv Med Sci. 2016;27(5):393-401.
23. Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacterbaumannii. Antimicrob Agents Chemother. 2007;51(6):2065-9. [DOI:10.1128/AAC.01198-06]
24. Vecchione JJ, Alexander B, Sello JK. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob Agents Chemother. 2009;53(11):4673-7. [DOI:10.1128/AAC.00853-09]
25. Li L, Li Z, Guo N, et al. Synergistic activity of 1‐(1‐naphthylmethyl)‐piperazine with ciprofloxacin against clinically resistant Staphylococcus aureus, as determined by different methods. Lett App Microbiol. 2011;52(4):372-8. [DOI:10.1111/j.1472-765X.2011.03010.x]
26. Sonnet P, Izard D, Mullié C. Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. IntJAntimicrob Agents. 2012;39(1):77-80. [DOI:10.1016/j.ijantimicag.2011.08.005]
27. Dal T, Aksu B, Pagès J-M, Over-Hasdemir U. Expression of the adeB gene and responsiveness to 1-(1-naphthylmethyl)-piperazine and phenylalanyl-arginyl-β-naphthylamide in clinical isolates of Acinetobacter baumannii. J AntimicrobChemother. 2013;68(5):1200-2. [DOI:10.1093/jac/dks511]
28. Sisay M, Bussa N, Gashaw T, Mengistu G. Investigating In Vitro Antibacterial Activities of Medicinal Plants Having Folkloric Repute in Ethiopian Traditional Medicine. J Evidence-based Integ Med. 2019;24:2515690X19886276. [DOI:10.1177/2515690X19886276]
29. Chakotiya AS, Tanwar A, Narula A, Sharma RK. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity. Microb Path. 2016;98:98-105. [DOI:10.1016/j.micpath.2016.07.001]
30. Morita Y, Nakashima K-i, Nishino K, Kotani K, Tomida J, Inoue M, et al. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa. Front Microbiol. 2016;7:1223. [DOI:10.3389/fmicb.2016.01223]
31. Ballard E, Coote PJ. Enhancement of antibiotic efficacy against multi-drug resistant Pseudomonas aeruginosa infections via combination with curcumin and 1-(1-Naphthylmethyl)-piperazine. J Antimicrob Agents. 2016;2: 1000116. https://doi.org/10.4172/2472-1212.10001 [DOI:10.4172/2472-1212.1000116.]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb