Volume 29, Issue 137 (November & December 2021)                   J Adv Med Biomed Res 2021, 29(137): 352-358 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Musavi H, Azramezani Kop T, Ebrahimpour A, Rezatabar S, Dashtaki A, Kalaki-Jouybari F, et al . The Relationship between Vitamin D Deficiency and Increased Oxidative Stress in Patients with Colon Cancer. J Adv Med Biomed Res 2021; 29 (137) :352-358
URL: http://journal.zums.ac.ir/article-1-6233-en.html
1- Dept. of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
2- Dept. of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
3- Dept.of Radiathion Oncology, Babol University of Medical Sciences, Babol, Iran
4- Dept. of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran , hallalkhorsohrab@gmail.com
Abstract:   (119844 Views)

Background and Objective: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Oxidative stress is one of the involved factors in CRC onset and progression. Recent examinations have revealed antioxidant characteristics of vitamin D. Given the vital role of this vitamin in balancing free radicals and antioxidant capacity, in this study we intended to review the association between vitamin D deficiency and oxidative stress in CRC patients.
Materials and Methods: In the present case-control study, 30 CRC patients and 32 healthy individuals were entered, based on the defined inclusion and exclusion criteria. Peripheral blood was taken from the subjects. Thiobarbituric acid reactive substance (TBARS) values, total antioxidant capacity, and serum vitamin D were measured. Data were interpreted using SPSS 18 software; t-test and the Mann Whitney test were applied.
Results: The outcomes explained that TBARS values were significantly greater in patients group (P <0.005), but no meaningful difference was monitored in the total antioxidant capacity. 21 (70%) patients and 14 (44%) control subjects had inadequate vitamin D. There was a significant association between serum vitamin D in both groups (P <0.005). A notable negative relationship was found between vitamin D values and oxidative stress indicator (p=0.05, r =-0.249).
Conclusion: Insufficient vitamin D can lead to an increase in oxidative stress, which is directly associated with CRC. Serum vitamin D levels were also inadequate in high percentage of cancer patients. Given the predominance of vitamin D insufficiency in the population, more extensive studies are required to prove the impact of deficiency on disease pathogenesis.

Full-Text [PDF 453 kb]   (117512 Downloads) |   |   Full-Text (HTML)  (1642 Views)  

✅ Insufficient vitamin D can lead to an increase in oxidative stress, which is directly associated with CRC. Serum vitamin D levels were also inadequate in high percentage of cancer patients. Given the predominance of vitamin D insufficiency in the population, more extensive studies are required to prove the impact of deficiency on disease pathogenesis.
 


Type of Study: Original Article | Subject: Clinical medicine
Received: 2020/12/15 | Accepted: 2021/05/6 | Published: 2021/08/1

References
1. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin.2020; 70(3):145-164. [DOI:10.3322/caac.21601]
2. Janion K, Szczepańska E, Nowakowska-Zajdel E, Strzelczyk J, Copija A. Selected oxidative stress markers in colorectal cancer patients in relation to primary tumor location-A Preliminary Research. Medicina. 2020;56(2):47. [DOI:10.3390/medicina56020047]
3. Avolio R, Matassa DS, Criscuolo D, Landriscina M, Esposito F. Modulation of mitochondrial metabolic reprogramming and oxidative stress to overcome chemoresistance in cancer. Biomolec. 2020;10(1):135. [DOI:10.3390/biom10010135]
4. Wang Z, Li S, Cao Y, et al. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid Med Cell Longev. 2016;2016. 9875298 [DOI:10.1155/2016/9875298]
5. Perše M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Res Int. 2013;2013. 725710 [DOI:10.1155/2013/725710]
6. Musavi H, Abazari O, Barartabar Z, et al. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch Physiol Biochem. 2020:1-9. [DOI:10.1080/13813455.2020.1826530]
7. Wang EW, Siu PM, Pang MY, Woo J, Collins AR, Benzie IF. Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease. Br J Nutr. 2017;118(1):11-6. [DOI:10.1017/S000711451700188X]
8. McCullough ML, Zoltick ES, Weinstein SJ, et al. Circulating vitamin D and colorectal cancer risk: an international pooling project of 17 cohorts. J Nat Cancer Ins. 2019;111(2):158-69. [DOI:10.1093/jnci/djy087]
9. Vaughan-Shaw PG, Buijs LF, Blackmur JP, et al. The effect of vitamin D supplementation on survival in patients with colorectal cancer: systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020:1-8. [DOI:10.1038/s41416-020-01060-8]
10. Benzie I, Devaki M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of Antioxidant Activity & Capacity. 2018:77-106. [DOI:10.1002/9781119135388.ch5]
11. Abazari O, Divsalar A, Ghobadi R. Inhibitory effects of oxali-Platin as a chemotherapeutic drug on the function and structure of bovine liver catalase. J Biomolec Struc Dynam. 2020;38(2):609-15. [DOI:10.1080/07391102.2019.1581088]
12. Ghani MA, Barril C, Bedgood Jr DR, Prenzler PD. Substrate and TBARS variability in a multi‐phase oxidation system. Europ J Lipid Sci Technol. 2017;119(4):1500500. [DOI:10.1002/ejlt.201500500]
13. Liu H, Liu X, Zhang C, et al. Redox imbalance in the development of colorectal cancer. J Cancer. 2017;8(9):1586. [DOI:10.7150/jca.18735]
14. Abazari O, Shafaei Z, Divsalar A, et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1, 10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. J Iran Chem Soc. 2020:1-14. [DOI:10.1007/s13738-020-01879-1]
15. Carini F, Mazzola M, Rappa F, et al. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017;37(9):4759-66. [DOI:10.21873/anticanres.11882]
16. Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda L, Sulkowska M. Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol. 2005;11(3):403. [DOI:10.3748/wjg.v11.i3.403]
17. Yang Y, Karakhanova S, Werner J, V Bazhin A. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem. 2013;20(30):3677-92. [DOI:10.2174/0929867311320999165]
18. Shafaei Z, Abazari O, Divsalar A, et al. Effect of a synthesized amyl-glycine1, 10-phenanthroline platinum nitrate on structure and stability of human blood carrier protein, albumin: Spectroscopic and modeling approaches. J Fluorescence. 2017;27(5):1829-38. [DOI:10.1007/s10895-017-2120-4]
19. Lee JH, Hwang I, Kang YN, Choi IJ, Kim DK. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis. PLoS One. 2015;10(3):e0118612. [DOI:10.1371/journal.pone.0118612]
20. Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Molec Epidemiol Genet. 2016;7(3):105.
21. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck's Arch Surg. 2006;391(5):499-510. [DOI:10.1007/s00423-006-0073-1]
22. Mohr SB, Gorham ED, Kim J, Hofflich H, Cuomo RE, Garland CF. Could vitamin D sufficiency improve the survival of colorectal cancer patients? J Steroid Biochem Molec Biol. 2015;148:239-44. [DOI:10.1016/j.jsbmb.2014.12.010]
23. Filgueiras M, Rocha N, Novaes J, Bressan J. Vitamin D status, oxidative stress, and inflammation in children and adolescents: a systematic review. Crit Rev Food Sci Nutr. 2020;60(4):660-9. [DOI:10.1080/10408398.2018.1546671]
24. Asadi A, Nezhad DY, Javazm AR, et al. In vitro effects of curcumin on transforming growth factor-β-mediated non-smad signaling pathway, oxidative stress, and pro‐inflammatory cytokines production with human vascular smooth muscle cells. Iran J Allergy, Asthma Immunol. 2019:1-10. [DOI:10.18502/ijaai.v19i1.2421]
25. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane database of systematic reviews. 2014(1). [DOI:10.1002/14651858.CD007469.pub2]
26. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabet Endocrinol. 2014;2(1):76-89. [DOI:10.1016/S2213-8587(13)70165-7]
27. Wei MY, Garland CF, Gorham ED, Mohr SB, Giovannucci E. Vitamin D and prevention of colorectal adenoma: a meta-analysis. Cancer Epidemiol Prevent Biomarker. 2008;17(11):2958-69. [DOI:10.1158/1055-9965.EPI-08-0402]
28. Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA. Probing the biological evaluations of a new designed Pt (II) complex using spectroscopic and theoretical approaches: Human hemoglobin as a target. J Biomolec Struct Dynam. 2016;34(5):1123-31. [DOI:10.1080/07391102.2015.1071280]
29. Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR, Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br J Nutr. 2016;115(9):1643-60. [DOI:10.1017/S0007114516000696]
30. Jamali N, Song YS, Sorenson CM, Sheibani N. 1, 25 (OH) 2D3 regulates the proangiogenic activity of pericyte through VDR‐mediated modulation of VEGF production and signaling of VEGF and PDGF receptors. FASEB BioAdvances. 2019;1(7):415-34. [DOI:10.1096/fba.2018-00067]
31. Ng K, Wolpin B, Meyerhardt J, et al. Prospective study of predictors of vitamin D status and survival in patients with colorectal cancer. Br J Cancer. 2009;101(6):916-23. [DOI:10.1038/sj.bjc.6605262]
32. Abbasi M, Abazari OO. Probing the biological evaluations of a new designed Palladium (II) complex using spectroscopic and theoretical approaches: Human Hemoglobin as a Target. Arch Med Labo Sci. 2018;3(3).
33. Savoie MB, Paciorek A, Zhang L, et al. Vitamin D levels in patients with colorectal cancer before and after treatment initiation. J Gastrointestinal Cancer. 2019;50(4):769-79. [DOI:10.1007/s12029-018-0147-7]
34. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of cancer in adults. Coch Database Sys Rev. 2014(6). [DOI:10.1002/14651858.CD007469.pub2]
35. Li C, Li Y, Gao LB, et al. Vitamin D receptor gene polymorphisms and the risk of colorectal cancer in a Chinese population. Digest Dis Sci. 2009;54(3):634-9. [DOI:10.1007/s10620-008-0375-y]
36. Ferrer-Mayorga G, Larriba MJ, Crespo P, Muñoz A. Mechanisms of action of vitamin D in colon cancer. J Steroid Biochem Molec Biol. 2019;185:1-6. [DOI:10.1016/j.jsbmb.2018.07.002]
37. Larriba MJ, Martín-Villar E, García JM, et al. Snail2 cooperates with snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis. 2009;30(8):1459-68. [DOI:10.1093/carcin/bgp140]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb