Volume 33, Issue 156 (January & February 2025)                   J Adv Med Biomed Res 2025, 33(156): 18-27 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biglari S, Siami H, Ghahremani Z, Parsamanesh N. A Comprehensive Study of Guanylate-Binding Protein Family Members as Prognostic marker in Breast Cancer. J Adv Med Biomed Res 2025; 33 (156) :18-27
URL: http://journal.zums.ac.ir/article-1-7350-en.html
1- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2- School of Medicine, Islamic Azad university of Medical Science, Tehran, Iran
3- Department of Radiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
4- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran & Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran , neginparsa.684@gmail.com
Abstract:   (373 Views)

Background: Breast cancer (BrCa) is the most prevalent tumor among women globally, aside from nonmelanoma skin malignancies. Unfortunately, many BrCa patients exhibit a poor response to immune checkpoint inhibitors (ICIs) because of a deficiency of infiltrating immune cells. Earlier research has shown that guanylate-binding protein 1 (GBP1) can modify the inhibitory properties of inflammatory cytokines on endothelial cell proliferation, immigration, and invasion.
Objective: Since the fundamental functions of the GBP family in the cancer-immune cycle is uncertain, according to recent findings, the function of GBPs in BrCa was studied. However, the underlying function of the GBP family in the cancer-immunity cycle is uncertain. We decided to study GBPs’ role in BrCa.
Methods: We applied GEPIA, UALCAN, cBioPortal, GeneMANIA, Kaplan-Meier plotter, Human Protein Atlas, STRING, and TIMER in our analysis.
Results: Our results confirmed a strong relation between the expression of GBP1/GBP2/GBP3/GBP4/GBP5/GBP6/GBP7 and the infiltration of all immune cells. Specifically, high GBP1/4/5 expression was strongly linked with increased infiltration of dendritic cells, B cells, CD4+ T cells, CD8+ T cells, and neutrophils in BrCa, whereas GBP2/3/6/7 expression showed a weaker positive correlation.
Conclusion: These results suggest a therapeutic assessment for the GBP family in combination with ICIs for treating BrCa.

Full-Text [PDF 1105 kb]   (98 Downloads) |   |   Full-Text (HTML)  (50 Views)  
Type of Study: Original Research Article | Subject: Medical Biology
Received: 1901/12/14 | Accepted: 2025/02/27 | Published: 2025/03/13

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
2. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50:1-23. [DOI:10.1186/s40659-017-0140-9] [PMID] [PMCID]
3. Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387. [DOI:10.7150/ijbs.21635] [PMID] [PMCID]
4. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. [DOI:10.1001/jama.2018.19323] [PMID]
5. Duggan C, Dvaladze A, Rositch AF, Ginsburg O, Yip CH, Horton S, et al. The breast health global initiative 2018 global summit on improving breast healthcare through resource‐stratified phased implementation: methods and overview. Cancer. 2020;126:2339-52. [DOI:10.1002/cncr.32891] [PMID] [PMCID]
6. Zhang J, Zhang Y, Wu W, Wang F, Liu X, Shui G, et al. Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 2017;8(10):e3151. [DOI:10.1038/cddis.2017.559] [PMID] [PMCID]
7. Derakhshani A, Mollaei H, Parsamanesh N, Fereidouni M, Miri-Moghaddam E, Nasseri S, et al. Gene co-expression network analysis for identifying modules and functionally enriched pathways in vitiligo disease: A systems biology study. Iran J Allergy Asthma Immunol. 2020;19(5):517-28. [DOI:10.18502/ijaai.v19i5.4467] [PMID]
8. Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res. 2006;26(5):328-52. [DOI:10.1089/jir.2006.26.328] [PMID]
9. Vestal DJ, Jeyaratnam JA. The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. J Interferon Cytokine Res. 2011;31(1):89-97. [DOI:10.1089/jir.2010.0102] [PMID] [PMCID]
10. Weinländer K, Naschberger E, Lehmann MH, Tripal P, Paster W, Stockinger H, et al. Guanylate binding protein‐1 inhibits spreading and migration of endothelial cells through induction of integrin α4 expression. FASEB J. 2008;22(12):4168-78. [DOI:10.1096/fj.08-107524] [PMID]
11. Britzen-Laurent N, Lipnik K, Ocker M, Naschberger E, Schellerer VS, Croner RS, et al. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis. 2013;34(1):153-62. [DOI:10.1093/carcin/bgs310] [PMID]
12. Capaldo CT, Beeman N, Hilgarth RS, Nava P, Louis NA, Naschberger E, et al. IFN-γ and TNF-α-induced GBP-1 inhibits epithelial cell proliferation through suppression of β-catenin/TCF signaling. Mucosal Immunol. 2012;5(6):681-90. [DOI:10.1038/mi.2012.41] [PMID] [PMCID]
13. Guenzi E, Töpolt K, Lubeseder‐Martellato C, Jörg A, Naschberger E, Benelli R, et al. The guanylate binding protein‐1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP‐1 expression. EMBO J. 2003;22:3772-82. [DOI:10.1093/emboj/cdg382] [PMID] [PMCID]
14. Lipnik K, Naschberger E, Gonin-Laurent N, Kodajova P, Petznek H, Rungaldier S, et al. Interferon γ-induced human guanylate binding protein 1 inhibits mammary tumor growth in mice. Molecul Med. 2010;16:177-87. [DOI:10.2119/molmed.2009.00172] [PMID] [PMCID]
15. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330. [DOI:10.1038/nature11252] [PMID] [PMCID]
16. MacMicking JD. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol. 2004;25(11):601-9. [DOI:10.1016/j.it.2004.08.010] [PMID]
17. Gorbacheva VY, Lindner D, Sen GC, Vestal DJ. The interferon (IFN)-induced GTPase, mGBP-2: role in IFN-γ-induced murine fibroblast proliferation. J Biol Chem. 2002;277(8):6080-7. [DOI:10.1074/jbc.M110542200] [PMID]
18. Messmer-Blust AF, Balasubramanian S, Gorbacheva VY, Jeyaratnam JA, Vestal DJ. The Interferon-γ-induced Murine Guanylate-Binding Protein-2 Inhibits Rac Activation during Cell Spreading on Fibronectin and after Platelet-derived Growth Factor Treatment: Role for Phosphatidylinositol 3-Kinase. Mol Biol Cell. 2010;21(14):2514-28. [DOI:10.1091/mbc.e09-04-0344] [PMID] [PMCID]
19. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287-96. [DOI:10.1038/ncb1973] [PMID] [PMCID]
20. Balasubramanian S, Fan M, Messmer-Blust AF, Yang CH, Trendel JA, Jeyaratnam JA, et al. The interferon-γ-induced GTPase, mGBP-2, inhibits tumor necrosis factor α (TNF-α) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-κB and Rac protein. J Biol Chem. 2011;286(22):20054-64. [DOI:10.1074/jbc.M111.249326] [PMID] [PMCID]
21. Guimaraes DP, Oliveira IM, de Moraes E, Paiva GR, Souza DM, Barnas C, et al. Interferon‐inducible guanylate binding protein (GBP)‐2: A novel p53‐regulated tumor marker in esophageal squamous cell carcinomas. Int J Cancer. 2009;124(2):272-9. [DOI:10.1002/ijc.23944] [PMID]
22. Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, et al. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer. 2014;21:491-9. [DOI:10.1007/s12282-012-0404-8] [PMID]
23. Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res. 2022;36(12):4299-324. [DOI:10.1002/ptr.7620] [PMID]
24. Wild CP, Stewart BW, Wild C. World cancer report 2014: World Health Organization. Geneva, Switzerland; 2014.
25. Majeed W, Aslam B, Javed I, Khaliq T, Muhammad F, Ali A, et al. Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev. 2014;15(8):3353-8. [DOI:10.7314/APJCP.2014.15.8.3353] [PMID]
26. Praefcke GJ. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol. 2018;308(1):237-45. [DOI:10.1016/j.ijmm.2017.10.013] [PMID]
27. Abdullah N, Srinivasan B, Modiano N, Cresswell P, Sau AK. Role of individual domains and identification of internal gap in human guanylate binding protein-1. J Mol Biol. 2009;386(3):690-703. [DOI:10.1016/j.jmb.2008.12.060] [PMID]
28. Honkala AT, Tailor D, Malhotra SV. Guanylate-binding protein 1: an emerging target in inflammation and cancer. Front Immunol. 2020;10:3139. [DOI:10.3389/fimmu.2019.03139] [PMID] [PMCID]
29. Quintero M, Adamoski D, Reis LMd, Ascenção CFR, Oliveira KRSd, Goncalves KdA, et al. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer. 2017;17:1-16. [DOI:10.1186/s12885-017-3726-2] [PMID] [PMCID]
30. Ascierto ML, Idowu MO, Zhao Y, Khalak H, Payne KK, Wang X-Y, et al. Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. J Transl Med. 2013;11:1-11. [DOI:10.1186/1479-5876-11-145] [PMID] [PMCID]
31. Ramsauer K, Farlik M, Zupkovitz G, Seiser C, Kröger A, Hauser H, et al. Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-γ-inducible gbp2 gene. Proc Natl Acad Sci. 2007;104(8):2849-54. [DOI:10.1073/pnas.0610944104] [PMID] [PMCID]
32. Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 2012;336(6080):481-5. [DOI:10.1126/science.1217141] [PMID]
33. Hotter D, Sauter D, Kirchhoff F. Guanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins. Small GTPases. 2017;8(1):31-7. [DOI:10.1080/21541248.2016.1189990] [PMID] [PMCID]
34. Cimas FJ, Manzano A, Baliu-Piqué M, García-Gil E, Pérez-Segura P, Nagy Á, et al. Genomic mapping identifies mutations in RYR2 and AHNAK as associated with favorable outcome in basal-like breast tumors expressing PD1/PD-L1. Cancers. 2020;12(8):2243. [DOI:10.3390/cancers12082243] [PMID] [PMCID]
35. Hunt EN, Kopacz JP, Vestal DJ. Unraveling the role of guanylate-binding proteins (GBPs) in breast cancer: A comprehensive literature review and new data on prognosis in breast cancer subtypes. Cancers. 2022;14(11):2794. [DOI:10.3390/cancers14112794] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb