Volume 33, Issue 161 (November & December 2025)                   J Adv Med Biomed Res 2025, 33(161): 358-371 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saleem D, Ali Z H, Ibrahim N W, Abbas A K, Abd-Almonaeem T M, Al-Musawi M H et al . Exploring Pyrazole and Diazepine Derivatives: Advances in Molecular Docking, Synthesis, and Biological Activities. J Adv Med Biomed Res 2025; 33 (161) :358-371
URL: http://journal.zums.ac.ir/article-1-7853-en.html
1- College of Pharmacy, AL-Mustansiriyah University, Baghdad, Iraq
2- Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
3- Muthanna Agriculture Directorate, Ministry of Agriculture, Al-Muthanna, Iraq
4- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
5- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran , gharbavi1981@gmail.com
Abstract:   (215 Views)

Background & Objective: This study focuses on the synthesis and evaluation of a series of new pyrazole and diazepine derivatives, which are significant heterocyclic compounds known for their biological and pharmacological potential. The primary objectives were to characterize the synthesized compounds, investigate their inhibitory potential against glucosamine-6-phosphate synthase via molecular docking, and evaluate their antibacterial and anticancer activities.
 Materials & Methods: The derivatives were prepared using conventional organic methods from chalcone intermediates derived from 4-aminoacetophenone, which reacted with various substituted anilines. Structural confirmation was achieved using FT-IR and 1HNMR spectroscopy. Molecular docking studies were performed to assess the binding affinities and interactions of the compounds with glucosamine-6-phosphate synthase. Biological evaluation included testing antibacterial activity against E. coli and S. aureus and assessing cytotoxicity against the MCF-7 breast cancer cell line.
Results:  Molecular docking revealed that both the pyrazole and diazepine derivatives exhibited favorable binding affinities for glucosamine-6-phosphate synthase by forming multiple stabilizing interactions within the enzyme's active site, suggesting a promising potential as enzyme inhibitors. Biological evaluation showed that some derivatives had considerable antibacterial activity, with compound 5 being especially effective against E. coli and S. aureus; its efficacy increased with concentration. Additionally, derivative 5 demonstrated notable cytotoxicity against the MCF-7 breast cancer cell line, reducing cell viability in a clear dose-dependent manner.
Conclusion:  The comprehensive study confirmed that the new pyrazole and diazepine derivatives, characterized through synthesis and spectroscopy, are promising antibacterial and anticancer leads due to favorable molecular docking profiles and demonstrated structure-activity relationships, warranting future optimization.

Full-Text [PDF 1855 kb]   (20 Downloads)    
Type of Study: Original Research Article | Subject: Pharmacology
Received: 2025/09/20 | Accepted: 2025/12/7 | Published: 2025/12/12

References
1. Asif M, Almehmadi M, Alsaiari AA, Allahyani M. Diverse pharmacological potential of different substituted pyrazole derivatives. Current Organic Synthesis. 2024;21(7):858-88. [DOI:10.2174/0115701794260444230925095804] [PMID]
2. Qadir T, Amin A, Sharma PK, Jeelani I, Abe H. A review on medicinally important heterocyclic compounds. Open Med Chem J. 2022;16(1). [DOI:10.2174/18741045-v16-e2202280]
3. Bhattacharya S, Chakraborty S, Pal R, Saha S, Ghosh B, Mandal C, et al. A Comprehensive Review on Pyrazole and It's Pharmacological Properties. Int J Res in Appl Sci Eng Technol. 2022;10(IX):1769-74.
4. Sánchez-Céspedes J, Martínez-Aguado P, Vega-Holm M, Serna-Gallego A, Candela JI, Marrugal-Lorenzo JA, et al. New 4-acyl-1-phenylaminocarbonyl-2-phenylpiperazine derivatives as potential inhibitors of adenovirus infection. Synthesis, biological evaluation, and structure-activity relationships. J Med Chem. 2016;59(11):5432-48. [DOI:10.1021/acs.jmedchem.6b00300] [PMID]
5. Chen H, Ma YB, Huang XY, Geng CA, Zhao Y, Wang LJ, et al. Synthesis, structure–activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett. 2014;24(10):2353-9. [DOI:10.1016/j.bmcl.2014.03.060] [PMID]
6. Walter A, Mayer C. Peptidoglycan structure, biosynthesis, and dynamics during bacterial growth. InExtracellular sugar-based biopolymers matrices. 2019. pp. 237-299. Cham, Switzerland: Springer International Publishing. [DOI:10.1007/978-3-030-12919-4_6]
7. Gupta R, Gupta N, Bindal S. Bacterial cell wall biosynthesis and inhibitors. InFundamentals of Bacterial Physiology and Metabolism. 2021. pp. 81-98. Singaporeو Singapore: Springer Singapore. [DOI:10.1007/978-981-16-0723-3_3]
8. Santiago R, Freire P, Teixeira A, Bandeira P, Santos H, Lemos TL, et al. FT-Raman and FT-IR spectra and DFT calculations of chalcone (2E)-1-(4-aminophenyl)-3-phenyl-prop-2-en-1-one. Vib Spectrosc. 2018;97:1-7. [DOI:10.1016/j.vibspec.2018.04.007]
9. Cai HX, Wu WN, Li XX, Wang Y. 3-Methyl-4-{[(3-{[(3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-ylidene)(phenyl) methyl] aminomethyl} benzyl) amino](phenyl) methylidene}-1-phenyl-1H-pyrazol-5 (4H)-one. Struct Rep. 2011;67(8):o2015. [DOI:10.1107/S1600536811027000] [PMID] [PMCID]
10. Loughzail M, Fernandes JA, Baouid A, Essaber M, Cavaleiro JA, Almeida Paz FA. 4-Phenyl-1-(prop-2-yn-1-yl)-1H-1, 5-benzodiazepin-2 (3H)-one. Struct Rep. 2011;67(8):o2075-o6. [DOI:10.1107/S1600536811027371] [PMID] [PMCID]
11. Gharbavi M, Danafar H, Amani J, Sharafi A. Immuno-informatics analysis and expression of a novel multi-domain antigen as a vaccine candidate against glioblastoma. Int Immunopharmacol. 2021;91:107265. [DOI:10.1016/j.intimp.2020.107265] [PMID]
12. Malekzadeh H, Hussein S, Khudhair I, Nabeel A, Gharbavi M. The in vitro Study of the Synergistic Antibacterial Effect of Hydroalcoholic Mentha Extract with Alum on the Growth of Streptococcus mutans. Jundishapur J Nat Pharm Prod. 2024;19(4):e148545 [DOI:10.5812/jjnpp-148545]
13. Gharbavi M, Sharafi A, Motamed Fath P, Oruji S, Pakzad H, Kheiri Manjili H. Formulation and biocompatibility of microemulsion-based PMBN as an efficient system for paclitaxel delivery. J Appl Biotechnol Rep. 2021;8(1):e114985.
14. Tutar Y. Diazepine Derivative Compounds as Heat Shock Protein 90 Inhibitor in Oncology. Drug Des. 2015;4:e127. [DOI:10.4172/2169-0138.1000e127]
15. E. Hawaiz F, K. Samad M. Synthesis and spectroscopic characterization of some new biological active azo-pyrazoline derivatives. J Chem. 2012;9(3):1613-22. [DOI:10.1155/2012/525940]
16. Jagadhani S, Kundlikar S, Karale B. Synthesis and characterization of some fluorinated 1, 5-benzothiazepines and pyrazolines. Orient J Chem. 2015;31:601-4. [DOI:10.13005/ojc/310177]
17. Yaseen LA, Al-Amood HK. Preparation, Characterization, and Study of Antibacterial some new Pyrazole Derivatives. J Kufa Chem Sci. 2022;2(9):304-18. [DOI:10.36329/jkcm/2022/v2.i9.13304]
18. Rana M, Hungyo H, Parashar P, Ahmad S, Mehandi R, Tandon V, et al. Design, synthesis, X-ray crystal structures, anticancer, DNA binding, and molecular modelling studies of pyrazole-pyrazoline hybrid derivatives. RSC Adv. 2023;13(38):26766-79. [DOI:10.1039/D3RA04873J] [PMID] [PMCID]
19. Shehab WS, Elhoseni NKR, Aboulthana WM, Assy MG, Mousa SM, El-Bassyouni GT. Synthesis, molecular docking, assessment of biological and anti-diabetic properties of benzalacetophenone derivatives. Sci Rep. 2025;15(1):14159. [DOI:10.1038/s41598-025-96610-6] [PMID] [PMCID]
20. Mustafa G, Sabir S, Sumrra SH, Zafar W, Arshad MN, Hassan AU, et al. Synthesis, structure elucidation, SC-XRD/DFT, molecular modelling simulations and DNA binding studies of 3, 5-diphenyl-4, 5-dihydro-1 H-pyrazole chalcones. Biomol Struct Dyn. 2025;43(4):1831-46. [DOI:10.1080/07391102.2023.2293260] [PMID]
21. Sapkota KR. Synthesis, Characterization, and Structural Elucidation of a Novel (E)-1-(1-Phenyl-1H-pyrazol-4-yl)-N-(1-(p-tolyl)-1H-pyrazol-5-yl) methanimine. Intell Multidiscip Res. 2025;4(1):67-80. [DOI:10.3126/ijmr.v4i1.76932]
22. Bouhfid R, Lazar S, Essassi EM, Leger J-M, Jarry C, Guillaumet G. Crystal structure of (Z)-1, 3-diallyl-4-(2-oxopropylidene)-4, 5-dihydro-1H-1, 5-benzodiazepin-2 (3H)-one, C18H20N2O2. Z fur Krist New Cryst Struct. 2008;223(4):435-6. [DOI:10.1524/ncrs.2008.0190]
23. Spirlet M-R, Mohsine A, Christians L. Crystal structure of N-benzyl-dibenzo [d, f]-1, 2-thiazepin-3-one, C20H15NOS. Z fur Krist New Cryst Struct. 1999;214(1):139-40. [DOI:10.1515/ncrs-1999-0170]
24. Ayyash A, Juwair K, Najeeb O, Jasim N. Synthesis of New Bioactive Compounds of Pyrazino [2, 3-e][1, 3] Oxazepines and Pyrazino [2, 3-e][1, 3] Diazepines Bearing 1, 3, 4-Oxadiazole Moieties. Egypt J Chem. 2021;64(6):2945-52. [DOI:10.21608/ejchem.2021.55735.3174]
25. Siliveri S, Bashaboina N, Vamaraju HB, Raj S. Design, synthesis, molecular docking, ADMET studies and biological evaluation of pyrazoline incorporated 1, 2, 3-triazole benzene sulphonamides. Int J Pharm Pharm Sci. 2019;11:6-15. [DOI:10.22159/ijpps.2019v11i6.32684]
26. Salih RHH, Hasan AH, Hussein AJ, Samad MK, Shakya S, Jamalis J, et al. One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Res Chem Intermed. 2022;48(11):4729-51. [DOI:10.1007/s11164-022-04831-5] [PMCID]
27. Belal A, Abdel Gawad NM, Mehany AB, Abourehab MA, Elkady H, Al‐Karmalawy AA, et al. Design, synthesis and molecular docking of new fused 1 H-pyrroles, pyrrolo [3, 2-d] pyrimidines and pyrrolo [3, 2-e][1, 4] diazepine derivatives as potent EGFR/CDK2 inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):1884-902. [DOI:10.1080/14756366.2022.2096019] [PMID] [PMCID]
28. Javaregowda VG, Doreswamy BH, Ningaiah S, Bhadraiah UK, Kemparaju K, Madegowda M. Molecular docking of 1H-pyrazole derivatives to receptor tyrosine kinase and protein kinase for screening potential inhibitors. Bioinformation. 2014;10(7):413. [DOI:10.6026/97320630010413] [PMID] [PMCID]
29. Sayed AR, Gomha SM, Abdelrazek FM, Farghaly MS, Hassan SA, Metz P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem. 2019;13(1):116. [DOI:10.1186/s13065-019-0632-5] [PMID] [PMCID]
30. Radini IAM. Design, synthesis, and antimicrobial evaluation of novel pyrazoles and pyrazolyl 1, 3, 4-thiadiazine derivatives. Molecules. 2018;23(9):2092. [DOI:10.3390/molecules23092092] [PMID] [PMCID]
31. A Alam M. Antibacterial pyrazoles: Tackling resistant bacteria. Future Med Chem. 2022;14(5):343-62. [DOI:10.4155/fmc-2021-0275] [PMID] [PMCID]
32. Burke A, Di Filippo M, Spiccio S, Schito AM, Caviglia D, Brullo C, et al. Antimicrobial evaluation of new pyrazoles, indazoles and pyrazolines prepared in continuous flow mode. Int J Mol Sci. 2023;24(6):5319. [DOI:10.3390/ijms24065319] [PMID] [PMCID]
33. Marinescu M. Synthesis of antimicrobial benzimidazole-pyrazole compounds and their biological activities. Antibiotics. 2021;10(8):1002. [DOI:10.3390/antibiotics10081002] [PMID] [PMCID]
34. Shawky AM, Ibrahim NA, Abourehab MA, Abdalla AN, Gouda AM. Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential cytotoxicity and CDK inhibitory activities. J Enzyme Inhib Med Chem. 2021;36(1):15-33. [DOI:10.1080/14756366.2021.1937618] [PMID] [PMCID]
35. Alaa AM, El-Azab AS, Brogi S, Ayyad RR, Alkahtani HM, Abuelizz HA, et al. Synthesis, enzyme inhibition assay, and molecular modeling study of novel pyrazolines linked to 4-methylsulfonylphenyl scaffold: antitumor activity and cell cycle analysis. RSC Adv. 2024;14(31):22132-46. [DOI:10.1039/D4RA03902E] [PMID] [PMCID]
36. Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent advances in the development of pyrazole derivatives as anticancer agents. Int J Mol Sci. 2023;24(16):12724. [DOI:10.3390/ijms241612724] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb