Volume 19, Issue 75 (4-2011)                   J Adv Med Biomed Res 2011, 19(75): 37-47 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili M H, Ganjkhani M, Mellati A, Haghdoost-Yazdi H, Sofiabadi M. Dual Effects of Morphine on Spontaneuse Seizure Activity in Mouse Brain Hippocampal Slices. J Adv Med Biomed Res 2011; 19 (75) :37-47
URL: http://journal.zums.ac.ir/article-1-1490-en.html
1- Dept. of Physiology, Qazvine University of Medical Sciences, Qazvine, Iran , Esmail66@yahoo.com
2- Dept. of Physiology, Zanjan University of Medical Sciences, Zanjan, Iran
3- Dept. of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
4- Dept. of Physiology, Qazvine University of Medical Sciences, Qazvine, Iran
Abstract:   (172695 Views)

Background and Objective: Opiates have complex effects on seizure activity. They have both anti- and proconvulsive effects depending on experimental conditions.
The aim of this study was to determine the effects of different doses of morphine and naloxon on spontaneous seizure activity in mouse brain hippocampal slices.
Materials and Methods: Spontaneous epileptic activity in the brain hippocampal slices of mouse was induced by continuous perfusion of low magnesium artificial cerebrospinal fluid (low -Mg2+ ACSF). Extra cellular recordings were performed in the hippocampal CA1 pyramidal cell layer to account for the effects of the drugs on amplitude, duration and number of the ictal events as well as number of interictal spikes. 
Results: Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 µM), morphine decreased seizure activity. Higher morphine concentrations (30 & 100 µM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist, blocked the proconvulsant action of morphine.
Conclusion: The results of this study showed that the effect of morphine on seizure in mouse is dose dependent. In other words, low systemic doses of morphine have anticonvulsant effects while high doses are proconvulsant.

Full-Text [PDF 335 kb]   (160185 Downloads)    
Type of Study: Original Research Article |
Received: 2011/06/8 | Accepted: 2014/06/22 | Published: 2014/06/22

References
1. Engel J. Excitation and inhibition in epilepsy. Can J Neurol Sci. 1996; 23: 167-74. [DOI:10.1017/S0317167100038464] [PMID]
2. Holmes GL. Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia. 1997; 38: 12-30. [DOI:10.1111/j.1528-1157.1997.tb01074.x] [PMID]
3. Breuker E, Dingledine R, Iversen LL. Evidence for naloxone and opiates as GABA antagonists. Br J Pharmacol. 1976; 58: 458-60.
4. Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci. 1990; 11: 290-6. [DOI:10.1016/0165-6147(90)90011-V]
5. Lopez F, Miller LG, Thompson ML, Schatzki A. Chronic morphine administration augments benzodiazepine binding and GABA-A receptor function. Psychopharmacol (berl). 1990; 101: 545-9. [DOI:10.1007/BF02244235] [PMID]
6. Morimoto K. Seizure-triggering mechanisms in the kindling model of epilepsy: collapse of GABA-mediated inhibition and activation of NMDA receptors. Neurosci Biobehav Rev. 1989; 13: 253-60. [DOI:10.1016/S0149-7634(89)80060-0]
7. Madison DV, Nicoll RA. Enkephalin hyperpolarizes interneurones in the rat hippocampus. J Physiol. 1988; 398: 123-130. [DOI:10.1113/jphysiol.1988.sp017033] [PMID] [PMCID]
8. Fundytus M E, Coderre TJ. Effect of activity at metabotropic as well as ionotropic (NMDA), glutamate receptors on morphine dependence. Br J Pharmacol. 1994; 113: 1215-20. [DOI:10.1111/j.1476-5381.1994.tb17127.x] [PMID] [PMCID]
9. Kreeger JS, Yukhananov AA, Larson YR. Altered N-methyl-D- aspartate (NMDA) activity in the mouse spinal cord following morphine is mediated by sigma activity. Brain Res. 1995; 672: 83-8. [DOI:10.1016/0006-8993(94)01383-S]
10. Ahmad I, Pleuvry BJ. Interactions between opioid drugs and propofol in laboratory models of seizures. Br J Anaesth. 1995; 74: 311-4. [DOI:10.1093/bja/74.3.311] [PMID]
11. Yukhananov RY, Larson AA. Morphine modulates excitatory amino acid-induced activity in the mouse spinal cord: short-term effects on N-methyl-D-aspartate (NMDA) and long-term effects on kainic acid. Brain Res. 1994; 646: 194-200. [DOI:10.1016/0006-8993(94)90077-9]
12. Albertson TE, Joy RM, Stark LG. Modification of kindled amygdaloid seizures by opiate agonists and antagonists. J Pharmacol Exp Ther. 1984; 228: 620-7.
13. Foot F, Gale K. Morphine potentiates seizures induced by GABA antagonist and attenuates seizures induced by electroshock in the rat. J Pharmacol. 1983; 95: 259-64. [DOI:10.1016/0014-2999(83)90643-X]
14. Frenk H. Pro- and anticonvulsant actions of morphine and the endogenous opioids: involvement and interactions of multiple opiate And non-opiate systems. Brain Res. 1983; 287: 197-210. [DOI:10.1016/0165-0173(83)90039-5]
15. Yahyavi-Firoz-Abadi N. Melatonin enhances the anticonvulsant and proconvulsant effects of morphine in mice: role for nitric oxide signaling pathway. Epilepsy Res. 2007; 75: 138-44. [DOI:10.1016/j.eplepsyres.2007.05.002] [PMID]
16. Shafaroodi H, Asadi S, Sadeghipour H, Ghasemi M, Ebrahimi F, Tavakoli S, Hajrasouliha AR, Dehpour AR. Role of ATP-sensitive potassium channels in the biphasic effects of morphine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Res. 2007; 75: 63-9. [DOI:10.1016/j.eplepsyres.2007.04.005] [PMID]
17. Puglisi-Allegra S, Cabib A. Pharmacological evidence for a protective role of the endogenous opioid system on electroshock-induced seizures in the mouse, Neurosci Lett. 1985; 62: 241-247. [DOI:10.1016/0304-3940(85)90362-3]
18. Rocha L, Ackermann RF, Engel JJ. Effects of chronic morphine treatment on amygdaloid kindling development, ostictal seizure suppression and benzodiazepine receptor binding in rats. Epilepsy Res. 1996; 23: 225-33. [DOI:10.1016/0920-1211(95)00103-4]
19. Tanganelli S, Antonelli T, Morari M, Bianchi C, Beanin L. Glutamate antagonists prevent morphine withdrawal in mice and guinea pigs. Neurosci Lett. 1991; 122: 270-2. [DOI:10.1016/0304-3940(91)90875-T]
20. Avolli M, D'Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, et al. Network and pharmacological mechanisms leading to epileptic synchronization in the limbic system in vitro. Prog Neurobiol. 2002; 68: 167-207. [DOI:10.1016/S0301-0082(02)00077-1]
21. Wu C, Shen H, Zhang LA. Fundamental oscillatory state of isolated rodent hippocampus.J Physiol. 2002; 540: 509-27. [DOI:10.1113/jphysiol.2001.013441] [PMID] [PMCID]
22. Fuller TA, Olney JW, Conboy VT. Naloxone blocks morphine enhancement of Kainic acid neurotoxicity. Life Sci. 1982; 31: 229-33. [DOI:10.1016/0024-3205(82)90582-3]
23. Alreja M, Aghajanian G. Opiates suppress a restin sodium dependent inward current and activate an outward potassium current in locus coeruleus neurons. J Neurosic. 1993; 13: 3525-32. [DOI:10.1523/JNEUROSCI.13-08-03525.1993] [PMCID]
24. Vaughan CW, Ingram SL, Connor MA, Christie MJ. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997; 390: 611-4. [DOI:10.1038/37610] [PMID]
25. Dichiara G, North RA. Neurobiology of opiate abuse. Trends Pharmacol Sci. 1992; 13: 185-93. [DOI:10.1016/0165-6147(92)90062-B]
26. Yajima Y, Narita M. Effects of differential modulation of mu, delta-and kappa opioid systems on bicuculline-induced convulsions in the mouse. Brain Res. 2000; 869: 120-6. [DOI:10.1016/S0006-8993(00)02096-5]
27. Lutfy K, Woodward RM, Keana JF, Weber E. Inhibition of clonic seizure-like excitatory effects induced by intrathectal morphine using two NMDA receptor antagonists: MK-801 and ACEA-1011. Eur J Pharmacol. 1994; 252: 261-6. [DOI:10.1016/0014-2999(94)90171-6]
28. Weisskopf MG, Zalutsky RA, Nicoll RA. The opioid peptide dynorphine mediates heterosynaptic depression of hippocampal mossy fiber synapses and modulates long-term potentiation. Nature. 1993; 362: 423-7. [DOI:10.1038/362423a0] [PMID]
29. Honar H, Riazi K, Homayoun H. Ultra-low dose naltrexone potentates the anticonvulsant effect of low dose morphine on clonic seizure. Neurosci. 2004; 129: 733-42. [DOI:10.1016/j.neuroscience.2004.08.029] [PMID]
30. Aghajanian MK, Takemori AE. Changes in adenosine receptor sensitivity in morphine-tolerant and dependent mice. J PharmacolExp Ther. 1986; 236: 615-20.
31. Devries TJ, Tjon Tien Ril, GHK, Van der Laan JW. Chronic exposure to morphine and naltrexone induces changes in catecholaminergic neurotransmision in rat brain without altering mu opioid receptor sensitivity. Life Sci. 1993; 52: 1685-93. [DOI:10.1016/0024-3205(93)90476-J]
32. Schindler CJ, Veliskova J, Slamberova R. Prenatal morphine exposure alters susceptibility to bicuculline seizures in a sex-and age-specific manner. Developmental Brain Res. 2000; 121: 119-22. [DOI:10.1016/S0165-3806(00)00031-6]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb