Volume 29, Issue 135 (July & August 2021)                   J Adv Med Biomed Res 2021, 29(135): 189-196 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S D, Rahimi M R, Abbaspoor M. Chronic Caffeine Ingestion Down-Regulates Liver and Visceral Adipose Tissue Inflammatory Gene Expression in High-Fat Diet-Induced Obesity. J Adv Med Biomed Res 2021; 29 (135) :189-196
URL: http://journal.zums.ac.ir/article-1-6137-en.html
1- Dept. of Exercise Physiology, University of Kurdistan, Sanandaj, Iran , dara769@live.com
2- Dept. of Exercise Physiology, University of Kurdistan, Sanandaj, Iran
3- Dept. of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
Abstract:   (134610 Views)

Background and Objective: Beverages containing caffeine have an anti-obesity function. Reduction of visceral adipose tissue (VAT) inflammation is considered an important strategy to ameliorate obesity compilations such as insulin resistance. This study aimed to investigate the effect of 8-week caffeine supplementation on the messenger RNA (mRNA) expression of fetuin-A (FetA) in the liver and nuclear factor kappa B (Nf-κb) and toll-like receptor 4 (Tlr4) in the VAT of rats with a high-fat diet (HFD).
Methods: A total of 40 male Wistar rats were randomly divided into control, caffeine, HFD, and HFD+caffeine supplement groups. After 2 weeks of acclimatization, the rats were randomly fed with HFD (46% fat) and a normal diet (5% fat) for 8 weeks. The rats in the caffeine groups were gavaged with 6 mg of the caffeine solution per kg of body weight. FetA mRNA of the liver, Nf-κb, and Tlr4 mRNA of VAT were determined using real-time polymerase chain reaction (PCR).
Results: The results indicated that FetA mRNA expression and weight gain in HFD+caffeine were significantly reduced compared to the other groups. Nf-κb mRNA expression was significantly higher in the HFD group than in the caffeine groups. No statistically significant differences were found in Tlr4 mRNA expression between the groups.
Conclusion: These findings suggest that consuming caffeine can prevent HFD-induced liver and adipose tissue (AT) inflammation.

Full-Text [PDF 640 kb]   (141617 Downloads) |   |   Full-Text (HTML)  (3213 Views)  

These findings suggest that consuming caffeine can prevent HFD-induced liver and adipose tissue (AT) inflammation.


Type of Study: Original Article | Subject: Life science
Received: 2020/07/23 | Accepted: 2020/12/19 | Published: 2021/02/28

References
1. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nature Rev Endocrinol. 2012;8(12):709-16. [DOI:10.1038/nrendo.2012.114]
2. Engin AB. Adipocyte-macrophage cross-talk in obesity. Obesity and Lipotoxicity: Springer; 2017. p. 327-43. [DOI:10.1007/978-3-319-48382-5_14]
3. Cochet F, Peri F. The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling. Int J Molec Sci. 2017;18(11):2318.
4. Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nature Med. 2012;18(8):1279. [DOI:10.1038/nm.2851]
5. Trepanowski J, Mey J, Varady K. Fetuin-A: a novel link between obesity and related complications. Int J Obes. 2015;39(5):734. [DOI:10.1038/ijo.2014.203]
6. Chatterjee P, Seal S, Mukherjee S, et al. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem. 2013;288(39):28324-30. [DOI:10.1074/jbc.C113.495473]
7. Cechella JL, Leite MR, Dobrachinski F, et al. Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats. Amino Acids. 2014;46(5):1187-95. [DOI:10.1007/s00726-014-1679-1]
8. Ramakers BP, Riksen NP, van den Broek P, et al. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury. Critical Care. 2011;15(1):R3. [DOI:10.1186/cc9400]
9. Yamauchi R, Kobayashi M, Matsuda Y, et al. Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem. 2010;58(9):5597-603. [DOI:10.1021/jf904062c]
10. Choi KM, Han KA, Ahn HJ, et al. The effects of caloric restriction on F etuin‐A and cardiovascular risk factors in rats and humans: a randomized controlled trial. Clin Endocrinol. 2013;79(3):356-63. [DOI:10.1111/cen.12076]
11. Öner-İyidoğan Y, Koçak H, Seyidhanoğlu M, et al. Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J Physiol Biochem. 2013;69(4):677-86. [DOI:10.1007/s13105-013-0244-9]
12. Köroğlu ÖA, MacFarlane PM, Balan KV, et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatol. 2014;106(3):235-40. [DOI:10.1159/000363217]
13. Liu CW, Tsai HC, Huang CC, et al. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am J Physiol-Endocrinol Metab. 2018;314(5):E433-E47. [DOI:10.1152/ajpendo.00094.2017]
14. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. [DOI:10.1186/1758-5996-3-17]
15. Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T. Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci, Biotechnol, Biochem. 2005;69(11):2219-23. [DOI:10.1271/bbb.69.2219]
16. Banaeifar AA, Gorzi A, Hedayati M, Nabiollahi Z, Neda RM, Khantan M. Effect of an 8-week resistance training program on acetylcholinesterase activity in rat muscle. Feyz J Kashan Univ Med Sci. 2011;15(4).
17. Gentile AM, Lhamyani S, Coín-Aragüez L, et al. RPL13A and EEF1A1 are suitable reference genes for qPCR during adipocyte differentiation of vascular stromal cells from patients with different BMI and HOMA-IR. PLoS One. 2016;11(6):e0157002. [DOI:10.1371/journal.pone.0157002]
18. Rebouças EdL, Costa JJdN, Passos MJ, Passos JRdS, Hurk Rvd, Silva JRV. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol. 2013;56(1):143-54. [DOI:10.1590/S1516-89132013000100019]
19. Kolahdouzi S, Talebi-Garakani E, Hamidian G, Safarzade A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life Sci. 2019;220:32-43. [DOI:10.1016/j.lfs.2019.01.037]
20. Yang Y, Wang J. The functional analysis of MicroRNAs involved in NF-κB signaling. Eur Rev Med Pharmacol Sci. 2016;20(9):1764-74.
21. Dwivedi DK, Kumar D, Kwatra M, et al. Voluntary alcohol consumption exacerbated high fat diet-induced cognitive deficits by NF-κB-calpain dependent apoptotic cell death in rat hippocampus: ameliorative effect of melatonin. Biomed Pharmacother. 2018;108:1393-403. [DOI:10.1016/j.biopha.2018.09.173]
22. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Sig Transduct Target Ther. 2017;2(1):1-9. [DOI:10.1038/sigtrans.2017.23]
23. Zhao W, Ma L, Cai C, Gong X. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-Induced THP-1 macrophages. Int J Biol Sci. 2019;15(8):1571. [DOI:10.7150/ijbs.34211]
24. Sheng Y, Li F, Qin Z. TNF receptor 2 makes tumor necrosis factor a friend of tumors. Front Immunol. 2018;9:1170. [DOI:10.3389/fimmu.2018.01170]
25. Prager P, Hollborn M, Steffen A, Wiedemann P, Kohen L, Bringmann A. P2Y1 receptor signaling contributes to high salt-induced priming of the NLRP3 inflammasome in retinal pigment epithelial cells. PloS one. 2016;11(10). [DOI:10.1371/journal.pone.0165653]
26. Thakkinstian A, Chailurkit L, Warodomwichit D, et al. Causal relationship between body mass index and fetuin‐A level in the asian population: a bidirectional mendelian randomization study. Clin Endocrinol. 2014;81(2):197-203. [DOI:10.1111/cen.12303]
27. Lin X, Braymer H, Bray G, York D. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci. 1998;63(2):145-53. [DOI:10.1016/S0024-3205(98)00250-1]
28. Rivera-Oliver M, Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci. 2014;101(1-2):1-9. [DOI:10.1016/j.lfs.2014.01.083]
29. Tauler P, Martinez S, Martinez P, Lozano L, Moreno C, Aguiló A. Effects of caffeine supplementation on plasma and blood mononuclear cell interleukin-10 levels after exercise. Int J Sport Nutr Exerc Metab. 2016;26(1):8-16. [DOI:10.1123/ijsnem.2015-0052]
30. Haskó G, Cronstein B. Methylxanthines and inflammatory cells. Methylxanthines: Springer; 2011. p. 457-68. [DOI:10.1007/978-3-642-13443-2_18]
31. Wedick NM, Brennan AM, Sun Q, Hu FB, Mantzoros CS, van Dam RM. Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutrition. 2011;10(1):93. [DOI:10.1186/1475-2891-10-93]
32. Dangol M, Kim S, Li CG, et al. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J Control Release. 2017;265:41-7. [DOI:10.1016/j.jconrel.2017.03.400]
33. Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279-85. [DOI:10.1038/nm.2851]
34. Fletcher DK, Bishop N. Caffeine ingestion and antigen‐stimulated human lymphocyte activation after prolonged cycling. Scand J Med Sci Sports. 2012;22(2):249-58. [DOI:10.1111/j.1600-0838.2010.01223.x]
35. Fletcher DK, Bishop NC. Effect of a single and repeated dose of caffeine on antigen-stimulated human natural killer cell CD69 expression after high-intensity intermittent exercise. Europe J Apply Physiol. 2011;111(7):1329-39. [DOI:10.1007/s00421-010-1751-9]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb