Volume 26, Issue 115 (5-2018)                   J Adv Med Biomed Res 2018, 26(115): 22-34 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramazi S, Iziy E, Fasihi A, Ghasemi-Dehkordi P. The Bioinformatics Study of the Interactions between MicroRNAs and Genes Involved in Relapse of breast Cancer Treated with Tamoxifen. J Adv Med Biomed Res 2018; 26 (115) :22-34
URL: http://journal.zums.ac.ir/article-1-5047-en.html
1- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran , shahinramazi@yahoo.com
2- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
3- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
4- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
Abstract:   (156763 Views)

Background and Objective: Tamoxifen is the most commonly used treatment for the patients with breast cancer called ER +, which prevents the expression of genes that are effective in the growth and proliferation of cancer cells by estrogen. Resistant to Tamoxifen is a major clinical problem in breast cancer treatment. In recent studies, the role of microRNAs in tamoxifen resistance has been raised through the influence of regulation of cell cycle control genes. Throughout this study, the interactions of microRNAs with genes involved in tamoxifen resistance were investigated.
Materials and Methods: By comparing the gene expression data in samples of patients sensitive and resistant to Tamoxifen from the GEO database and searching in the database of articles, genes and microRNAs with significant expression variations were determined. Then, by examining the correlation between the expression of genes and microRNAs and bioinformatics by mirwalk software, the interconnection network between the genes and microRNAs was drawn.
Results: The results showed that 21 genes and 62 microRNAs altered in Tamoxifen resistant specimens. With miR342-3P/5P targeting the HOXB13, PRM2, and KLK3 genes, and MiR-520h and miR-582-5p microRNAs, targeting 5 reduced expression genes, can lead to recurrence of breast cancer.
Conclusion: The regulatory network mapped out between a set of genes and microRNAs that are potentially involved in the recurrence of breast cancer treated with Tamoxifen could clarify the role of the microRNAs in the recurrence of breast cancer.

Full-Text [PDF 526 kb]   (156965 Downloads)    
Type of Study: Clinical Trials |
Received: 2018/02/5 | Accepted: 2018/02/5 | Published: 2018/02/5

References
1. Enayatrad M, Amoori N, Salehiniya H. Epidemiology and trends in breast cancer mortality in Iran. Iran J Public Health. 2015; 44:430-31.
2. Jemal A, Siegel R, Xu J. Cancer statistics. CA Cancer J Clin. 2010; 60: 277-300. [DOI:10.3322/caac.20073] [PMID]
3. Banerjee S, Saxena N, Sengupta K,et al. 17alpha-estradiol-induced VEGF-A expression in rat pituitary tumor cells is mediated through ER independent but PI3K-Akt dependent signaling pathway. Biochem Biophys Res Commun. 2003; 300: 209-15. [DOI:10.1016/S0006-291X(02)02830-9]
4. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nature Reviews Cancer 2009; 9:631-43. [DOI:10.1038/nrc2713] [PMID]
5. Chang XZ, Li DQ, Hou YF, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 2007; 9: 76-85. [DOI:10.1186/bcr1789] [PMID] [PMCID]
6. Shou J, Massarweh S, Osborne CK. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Nat Cancer Inst. 2004; 96: 926 -35. [DOI:10.1093/jnci/djh166] [PMID]
7. Rubí v, Luis B, Fabio S. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncology reports, 2014; 32: 3-15. [DOI:10.3892/or.2014.3190] [PMID]
8. Mosselman S, Polman J, Dijkema R.ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996; 392: 49-53. [DOI:10.1016/0014-5793(96)00782-X]
9. Dixon D, Couse JF, Korach KS. Disruption of the estrogen receptor gene in mice. Toxicol Pathol. 1997; 25: 518-20. [DOI:10.1177/019262339702500516] [PMID]
10. Croce CM. Oncogenes and cancer. N Engl J Med. 2008; 358: 502-11. [DOI:10.1056/NEJMra072367] [PMID]
11. Filipowicz W, Bhattacharyya S, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight. Nat Rev Genet. 2008; 9: 102-14. [DOI:10.1038/nrg2290] [PMID]
12. Gao FB. Context-dependent functions of specific microRNAs in neuronal development. Neural Develop. 2010; 5: 25-6. [DOI:10.1186/1749-8104-5-25] [PMID] [PMCID]
13. Tyler E, Ghoshal K, Ramaswamy B. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008; 283: 29897-903. [DOI:10.1074/jbc.M804612200] [PMID] [PMCID]
14. Aamir A, Kevin R, Ginnebaugh1, et al. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer. 2015; 15: 540-51. [DOI:10.1186/s12885-015-1561-x] [PMID] [PMCID]
15. Jiang Z, Zhengzhi Z, Peipei N. Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1expression. Cell Death Disease. 2016; 7: 2454-64. [DOI:10.1038/cddis.2016.361] [PMID] [PMCID]
16. Mingrong L, Keshuo D, Guofeng Z, et al. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRc. Sci Repotrs. 2015; 5: 8735-45. [DOI:10.1038/srep08735] [PMID] [PMCID]
17. Xiao JM, Zuncai W, Paula D, Ryan, SJ. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004; 5: 607-16. [DOI:10.1016/j.ccr.2004.05.015] [PMID]
18. MaI C, Vincent N, Heole'ne F. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res. 2008; 14: 1744-52. [DOI:10.1158/1078-0432.CCR-07-1833] [PMID] [PMCID]
19. Aoife W, Kirti S, Aleksandra B. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol. 2014; 233: 368-79 [DOI:10.1002/path.4363] [PMID] [PMCID]
20. Tejal J, Daniel E, Jan St. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget. 2016; 7: 57239-57253.3 [DOI:10.18632/oncotarget.11136] [PMID] [PMCID]
21. Daya L, James MW, Nikki H. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J Trans Med. 2013; 11: 57-67. [DOI:10.1186/1479-5876-11-57] [PMID] [PMCID]
22. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013; 41: 991-5. [DOI:10.1093/nar/gks1193] [PMID] [PMCID]
23. Dweep H. miRWalk - database: prediction of possible miRNA binding sites by "walking" the genes of 3 genomes. J Biomed Inform. 2011; 44: 839-7. [DOI:10.1016/j.jbi.2011.05.002] [PMID]
24. Ciafrè SA, Galardi S, Mangiola A. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Communv. 2005; 334: 1351-58. [DOI:10.1016/j.bbrc.2005.07.030] [PMID]
25. Pallante P, Visone R, Ferracin M, et al: MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006; 13: 497-508. [DOI:10.1677/erc.1.01209] [PMID]
26. Hanzhen X, Qiulian L, Ruichao C. A multi-step miRNA-mRNA regulatory network construction approach identifies gene signatures associated with endometrioid endometrial carcinoma. Genes. 2016; 7: 1-11. [DOI:10.3390/genes7060026] [PMID] [PMCID]
27. Marta L, Marta B, Luca A, Katia T, Laura M. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood. 2009; 114: 20-26. [DOI:10.1182/blood-2009-08-237495] [PMID]
28. Ruiqi M, Chenyu W, Junjian W, Dong W. MiRNA-mRNA Interaction Network in Non-small Cell Lung Cancer. Interdiscip Sci Comput Life Sci. 2016; 8: 209-19. [DOI:10.1007/s12539-015-0117-8] [PMID]
29. Shah N1, Jin K, Cruz LA. HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression. Cancer Res. 2013; 73: 5449-58. [DOI:10.1158/0008-5472.CAN-13-1178] [PMID] [PMCID]
30. Daniela L, Verena MC, Eva C. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol. 2012; 569-78. [DOI:10.1016/j.ygyno.2012.09.001] [PMID]
31. Teh LK, Mohamed NI, Salleh MZ. The risk of recurrence in breast cancer patients treated with tamoxifen: Polymorphisms of CYP2D6 and ABCB1. AAPS J. 2012; 14: 52-59. [DOI:10.1208/s12248-011-9313-6] [PMID] [PMCID]
32. Sylvie RF, Anne DT, Ariane D, Sylvie C. 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS ONE. 2009; 4: 7239-49. [DOI:10.1371/journal.pone.0007239] [PMID] [PMCID]
33. Manavalan TT, Teng Y. Differential expression of microRNA expression in tamoxifensensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Lett. 2011; 313: 26-43. [DOI:10.1016/j.canlet.2011.08.018] [PMID] [PMCID]
34. Ward A, Balwierz A, Zhang JD, Ku M. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013; 32: 1173-82. [DOI:10.1038/onc.2012.128] [PMID]
35. Ikeda K, Kuniko H, Toshihide U, Takashi S. MiR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Reports. 2015; 5: 13170-79. [DOI:10.1038/srep13170] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb