Volume 27, Issue 123 (July & August 2019)                   J Adv Med Biomed Res 2019, 27(123): 9-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Erfani Sharifian F, Bahrami F, Bahari Z. Spatial Learning Paradigm Can Increase Post-Stress Total Time of REM Sleep in Immobilized Rats. J Adv Med Biomed Res 2019; 27 (123) :9-15
URL: http://journal.zums.ac.ir/article-1-5471-en.html
1- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
2- Dept. of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran , farideh_bahrami@yahoo.com
3- Dept. of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract:   (147739 Views)

Background & Objective: Stress contributes to sleep-wake behavior in all animals. It seems that factors such as learning and memory processes can improve sleep disorders. Therefore, the present study was conducted to determine the effects of stress and learning (spatial memory) on total post-stress rapid-eye-movement (REM), non-rapid-eye-movement (NREM) and waking time in rats.
Materials & Methods: Adult rats (n=21) were divided into 3 groups; group 1 received only immobilization stress; group 2 was subjected only to the learning process (Barnes maze); and group 3 underwent both the stress and learning conditions. For each rat, sleep signals were recorded for 2 hours for 3 consecutive days. After recording of sleep or awakening signals, animal subjected to immobilization stress for 2 hours in each day. Then, post-stress and post-learning signals were recorded for another 2 hours.
Results: Immobilization stress resulted in significant decrease in total REM sleep time. However, total time of NREM increased following stress. Performing the learning task resulted in a significant increase in post-learning REM time (P<0.05). Moreover, total NREM time did not change markedly following the learning process. Interestingly, the learning process significantly (P<0.05) decreased total time of awakening when compared with pre-learning condition. However, learning process could increase REM sleep significantly (P<0.05) after the stress condition has been administered. 
Conclusion: Our data suggested that immobilization stress could not prevent REM sleep after a learning process has been administered. However, the completion of a learning process increased post-stress REM time. It seems that learning helps to prevent the inhibitory effects of stress on REM sleep.

Full-Text [PDF 646 kb]   (156130 Downloads) |   |   Full-Text (HTML)  (3966 Views)  

Our data suggested that immobilization stress could not prevent REM sleep after a learning process has been administered. However, the completion of a learning process increased post-stress REM time. It seems that learning helps to prevent the inhibitory effects of stress on REM sleep.


Type of Study: Original Research Article | Subject: Clinical Medicine
Received: 2019/04/22 | Accepted: 2019/06/6 | Published: 2019/07/1

References
1. Day TA. Defining stress as a prelude to mapping its neurocircuitry: No help from allostasis. Prog Neuro-Psychopharm Biol Psych. 2005; 29: 1195-2000. [DOI:10.1016/j.pnpbp.2005.08.005] [DOI:10.1016/j.pnpbp.2005.08.005] [PMID]
2. Ghobadi N, Sahraei H, Meftahi GH, Bananej M, Salehi S. Effect of estradiol replacement in ovariectomized NMRI mice in response to acute and chronic stress .J Apply Pharmaceutic Sci. 2016; 6(11): 176-84. [DOI:10.7324/JAPS.2016.601128] [DOI:10.7324/JAPS.2016.601128]
3. Zarrin Ehteram B, Sahraei H, Meftahi GH, Khosravi M. Effect of intermittent feeding on gonadal function in male and female NMRI mice during chronic stress. Braz Arch Biol Technol. 2017; 60: e170607. [DOI:10.1590/1678-4324-2017160607] [DOI:10.1590/1678-4324-2017160607]
4. Salehi Shemiran S, Meftahi GH, Sahraei H, Ghobadi N. Effect of testosterone replacement on feeding behaviors after acute and chronic stress in gonadectomized male NMRI mice. Front Biol. 2017; 12(6): 430-41. [DOI:10.1007/s11515-017-1470-2] [DOI:10.1007/s11515-017-1470-2]
5. Korte SM, Koolhaas JM, Wingfield JC, McEwen BS. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev. 2005; 29: 3-38. [DOI:10.1016/j.neubiorev.2004.08.009] [DOI:10.1016/j.neubiorev.2004.08.009] [PMID]
6. Machado DR, Afonso DJ, Kenny AR, et al. Identification of octopaminergic neurons that modulate sleep suppression by male sex drive. eLife. 2017; 6:e23130. [DOI:10.7554/eLife.23130] [DOI:10.7554/eLife.23130] [PMID] [PMCID]
7. Radahmadi M, Hosseini Dastgerdi A, Fallah N, Alaei H. The effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats. Physiol Pharm 2017; 21(3): 185-92.
8. Suchecki D, Tiba PA, Machado RB. REM sleep rebound as an adaptive response to stressful situations. Front Neurol. 2012; 3(41): 1-12. [DOI:10.3389/fneur.2012.00041] [DOI:10.3389/fneur.2012.00041] [PMID] [PMCID]
9. Sanford LD, Yang L. Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep. 2010; 33:621-30. [DOI:10.1093/sleep/33.5.621] [DOI:10.1093/sleep/33.5.621] [PMID] [PMCID]
10. Bonnet C, Leger L, Baubet V, Debilly G, Cespuglio R. Influence of a 1 h immobilization stress on sleep states and corticotrophin-like intermediate lobe peptide (CLIP or ACTH18-39, Ph-ACTH18-39) brain contents in the rat. Brain Res. 1997; 751: 54-63. [DOI:10.1016/S0006-8993(96)01390-X] [DOI:10.1016/S0006-8993(96)01390-X]
11. Vazquez-Palacios G, Velazquez-Moctezuma J. Effect of electric foot shocks, immobilization, and corticosterone administration on the sleep-wake pattern in the rat. Physiol Behav. 2000; 71: 23-28. [DOI:10.1016/S0031-9384(00)00285-7] [DOI:10.1016/S0031-9384(00)00285-7]
12. Levin YI, Strygin KN, Korabelnikova EA. Effect of personality on changes of sleep structure caused by emotional stress. Human Physiology. 2002; 28(3): 37-42. [DOI:10.1023/A:1015548500861] [DOI:10.1023/A:1015548500861]
13. Pawlyk AC, Morrison AR, Ross RJ, Brennan FX. Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev. 2008; 32(1): 99-117. [DOI:10.1016/j.neubiorev.2007.06.001] [DOI:10.1016/j.neubiorev.2007.06.001] [PMID] [PMCID]
14. Machida M, Yang L, Wellman LL, Sanford LD. Effects of stressor predictability on escape learning and sleep in mice. Sleep. 2013; 36(3): 421-30. [DOI:10.5665/sleep.2464] [DOI:10.5665/sleep.2464] [PMID] [PMCID]
15. Kim EJ, Dimsdale JE. The effect of psychosocial stress on sleep: A review of polysomnographic evidence. Behav Sleep Med. 2007; 5(4): 256-78. [DOI:10.1080/15402000701557383] [DOI:10.1080/15402000701557383] [PMID] [PMCID]
16. Hoheisel U, Vogt MA, Palme R, Gass P, Mense S. Immobilization stress sensitizes rat dorsal horn neurons having input from the low back. Eur J Pain. 2015;19(6): 861-70. [DOI:10.1002/ejp.682] [DOI:10.1002/ejp.682] [PMID]
17. Erfani Sharifian F, Bahrami F, Zekri S, Sahraei H. Cinnamaldehyde antagonizes REM sleep reduction induced by immobilization stress in rats. Mazandaran Univ Med Sci . 2019; 29 (175): 14-24.
18. Hadipour MM, Kaka GR, Bahrami F, et al. Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats. Synapse. 2018; 72(5): e22026. [DOI:10.1002/syn.22026] [DOI:10.1002/syn.22026] [PMID]
19. Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: Recent developments. Neurosci Biobehav Rev. 2009; 33(7): 1089-98. [DOI:10.1016/j.neubiorev.2009.05.004] [DOI:10.1016/j.neubiorev.2009.05.004] [PMID]
20. Vargas I, Friedman NP, Drake CL. Vulnerability to stress-related sleep disturbance and insomnia: Investigating the link with comorbid depressive symptoms. Trans Issues Psychol Sci. 2015; 1(1): 57-66 [DOI:10.1037/tps0000015] [DOI:10.1037/tps0000015] [PMID] [PMCID]
21. Palma BD, Suchecki D, Tufik S. Differential effects of acute cold and footshock on the sleep of rats. Brain Res. 2000; 861(1): 97-104. [DOI:10.1016/S0006-8993(00)02024-2] [DOI:10.1016/S0006-8993(00)02024-2]
22. Meerlo P, Pragt BJ, Daan S. Social stress induces high intensity sleep in rats. Neurosci Lett. 1997; 225(1): 41-44. [DOI:10.1016/S0304-3940(97)00180-8] [DOI:10.1016/S0304-3940(97)00180-8]
23. Tang X, Xiao J, Liu X, Sanford L D. Strain differences in the influence of open field exposure on sleep in mice. Behav. Brain Res. 2004; 154: 137-47. [DOI:10.1016/j.bbr.2004.02.002] [DOI:10.1016/j.bbr.2004.02.002] [PMID]
24. Smith CT, Nixon MR, Nader RS. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn Mem. 2004; 11(6): 714-19. [DOI:10.1101/lm.74904] [DOI:10.1101/lm.74904] [PMID] [PMCID]
25. Smith C, Young J, Young W. Prolonged increases in paradoxical sleep during and after avoidance-task acquisition. Sleep. 1980; 3:67-81.
26. Portell-Cortes I, Marti-Nicolovius M, Segura-Torres P, Morgado-Bernal I. Correlations between paradoxical sleep and shuttle-box conditioning in rats. Behav Neurosci. 1989; 103: 984-90. [DOI:10.1037/0735-7044.103.5.984] [DOI:10.1037/0735-7044.103.5.984] [PMID]
27. Datta S, Saha S, Prutzman S L, Mullins O J, Mavanji V. Pontine-wave generator activation-dependent memory processing of avoidance learning involves the dorsal hippocampus in the rat. J Neurosci Res. 2005; 80: 727-737. [DOI:10.1002/jnr.20501] [DOI:10.1002/jnr.20501] [PMID] [PMCID]
28. Smith C, Rose G M. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci. 1997; 111: 1197-204. [DOI:10.1037/0735-7044.111.6.1197] [DOI:10.1037/0735-7044.111.6.1197] [PMID]
29. Smith C, Wong P T. Paradoxical sleep increases predict successful learning in a complex operant task. Behav Neurosci. 1991; 105: 282-88. [DOI:10.1037/0735-7044.105.2.282] [DOI:10.1037/0735-7044.105.2.282] [PMID]
30. Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA. Visual discrimination task improvement: A multistep process occurring during sleep. J Cog Neurosci. 2000; 12: 246-54. [DOI:10.1162/089892900562075] [DOI:10.1162/089892900562075] [PMID]
31. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001; 29: 145-56. [DOI:10.1016/S0896-6273(01)00186-6] [DOI:10.1016/S0896-6273(01)00186-6]
32. Smith CT. Sleep states and memory processes in humans: Procedural vs. declarative memory systems. Sleep Med Rev. 2001; 5: 491-506. [DOI:10.1053/smrv.2001.0164] [DOI:10.1053/smrv.2001.0164] [PMID]
33. Smith CT. Sleep states, memory processes and synaptic plasticity. Behav Brain Res. 1996; 78: 49-56. [DOI:10.1016/0166-4328(95)00218-9] [DOI:10.1016/0166-4328(95)00218-9]
34. Smith C, Lapp L. Prolonged increases in both PS and number of REMs following a shuttle avoidance task. Physiol Behav. 1986; 36: 1053-57. [DOI:10.1016/0031-9384(86)90479-8] [DOI:10.1016/0031-9384(86)90479-8]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb