Volume 27, Issue 123 (July & August 2019)                   J Adv Med Biomed Res 2019, 27(123): 23-30 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghane M, Babaeekhou L, Jafar Shanjani M. AmpC β lactamases in Urinary Klebsiella pneumoniae Isolates: First Report of ACC Type AmpC β-lactamase Resistance in Iran. J Adv Med Biomed Res 2019; 27 (123) :23-30
URL: http://journal.zums.ac.ir/article-1-5642-en.html
1- Dept. of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran , ghane@iiau.ac.ir
2- Dept. of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
Abstract:   (147192 Views)

Background & Objective: The production of plasmid-mediated AmpC beta-lactamases (PMABLs) among urinary Klebsiella pneumoniae isolates causes a severe problem to the successful treatment of urinary tract infections (UTIs). This study was designed to evaluate antimicrobial resistance, the presence of AmpC beta-lactamase genes, and the genetic relatedness among K. pneumoniae strains separated from patients with UTI.
Materials & Methods: In this cross-sectional descriptive study, a total of 100 K. pneumoniae isolates were collected from UTI cases in Milad Hospital, Tehran, Iran. The sensitivity of the isolates to 12 antibiotics was tested using the Kirby-Bauer disk diffusion method. AmpC production was determined using a boronic acid combined-disk test. Polymerase chain reaction (PCR) was carried out to screen all isolates with family-specific PMABL genes. The genetic relatedness of AmpC-producing isolates was determined by an enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR).
Results: Over a period of 11 months, PMABLs were detected in 49 isolates (49%) of K. pneumoniae. Resistance to at least three classes of antimicrobials was detected in 30 (61.2%) PMABL producers. Among AmpC producers, 34 isolates harbored only one AmpC gene group, including MOX (n=11), EBC (n=8), ACC (n=7), CIT (n=4), FOX (n=2), and DHA (n=2). Multiple AmpC gene groups were detected in 15 isolates. The ERIC-PCR showed the polyclonal distribution of AmpC-producing isolates.
Conclusion: In our study, a high frequency of AmpC-producing K. pneumoniae was observed. This is the first report of ACC type AmpC beta-lactamase in Iran. Strategies to minimize the spread of AmpC beta-lactamase-producing isolates should be implemented.

Full-Text [PDF 543 kb]   (155653 Downloads) |   |   Full-Text (HTML)  (3298 Views)  

In our study, a high frequency of AmpC-producing K. pneumoniae was observed. This is the first report of ACC type AmpC beta-lactamase in Iran. Strategies to minimize the spread of AmpC beta-lactamase-producing isolates should be implemented.


Type of Study: Original Article | Subject: Medical Biology
Received: 2019/05/13 | Accepted: 2019/06/25 | Published: 2019/07/1

References
1. Bhandari R, Pant ND, Poudel A, Sharma M. Assessment of the effectiveness of three different cephalosporin/clavulanate combinations for the phenotypic confirmation of extended-spectrum beta-lactamase producing bacteria isolated from urine samples at National Public Health Laboratory, Kathmandu, Nepal. BMC Res Notes. 2016;9:390. [DOI:10.1186/s13104-016-2192-2] [DOI:10.1186/s13104-016-2192-2] [PMID] [PMCID]
2. Seifi K, Kazemian H, Heidari H, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol. 2016;9(1):e30682. [DOI:10.5812/jjm.30682] [DOI:10.5812/jjm.30682] [PMID] [PMCID]
3. Netikul T., Kiratisin P. Genetic characterization of carbapenem resistant Enterobacteriaceae and the spread of carbapenem resistant Klebsiella pneumonia ST340 at a university hospital in Thailand. PLoS One. 2015;10(9):e0139116. [DOI:10.1371/journal.pone.0139116] [DOI:10.1371/journal.pone.0139116] [PMID] [PMCID]
4. Lampri N, Galani I, Poulakou G, et al. Mecillinam/clavulanate combination: a possible option for the treatment of community-acquired uncomplicated urinary tract infections caused by extended-spectrum b-lactamase-producing Escherichia coli. J Antimicrob Chemother. 2012;67(10):2424-8. [DOI:10.1093/jac/dks215] [DOI:10.1093/jac/dks215] [PMID]
5. Jacoby GA. AmpC b-lactamases. Clin Microbiol Rev. 2009; 22(1): 161-82. [DOI:10.1128/CMR.00036-08] [DOI:10.1128/CMR.00036-08] [PMID] [PMCID]
6. Bauernfeind A, Chong Y, Schweighart Y: Extended broad spectrum -lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989; 17(5): 316-21. [DOI:10.1007/BF01650718] [DOI:10.1007/BF01650718] [PMID]
7. Japoni-Nejad A, Ghaznavi-Rad E., van Belkum A. Characterization of plasmid-mediated AmpC and carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res Perspect. 2014; 5(6): 333-38. [DOI:10.1016/j.phrp.2014.09.003] [DOI:10.1016/j.phrp.2014.09.003] [PMID] [PMCID]
8. Liu XQ, Liu YR. Detection and genotype analysis of AmpC β-lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med. 2016; 12(1):480-84. [DOI:10.3892/etm.2016.3295] [DOI:10.3892/etm.2016.3295] [PMID] [PMCID]
9. Pitout JD, Le PG, Moore KL, Church DL, Gregson DB. Detection of AmpC beta-lactamases in Escherichia coli, Klebsiella spp., Salmonella spp. and Proteus mirabilis in a regional clinical microbiology laboratory. Clin Microbiol Infect. 2010; 16(2): 165-70. [DOI:10.1111/j.1469-0691.2009.02756.x] [DOI:10.1111/j.1469-0691.2009.02756.x] [PMID]
10. Livermore DM. Current epidemiology and growing resistance of gram-negative pathogens. Korean J Internal Med. 2012; 27(2): 128-42. [DOI:10.3904/kjim.2012.27.2.128] [DOI:10.3904/kjim.2012.27.2.128] [PMID] [PMCID]
11. Maina D, Revathi G, Kariuki S, Ozwara H. Genotypes and cephalosporin susceptibility in extended-spectrum beta-lactamase producing Enterobacteriaceae in the community. J Infect Dev Ctries. 2012; 6(6): 470-77. [DOI:10.3855/jidc.1456] [DOI:10.3855/jidc.1456] [PMID]
12. Cheesbrough M. District laboratory practice in tropical countries, part II. 2nd ed. Cambridge University Press; 2006. [DOI:10.1017/CBO9780511543470] [PMCID]
13. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
14. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
15. Lee W, Jung B, Hong SG, et al. Comparison of 3 phenotypicdetection methods for identifying plasmid-mediated AmpC betalactamase-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis strains. Korean J Lab Med. 2009; 29(5): 448-54. [DOI:10.3343/kjlm.2009.29.5.448] [DOI:10.3343/kjlm.2009.29.5.448] [PMID]
16. Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC b-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002; 40(6): 2153-162. [DOI:10.1128/JCM.40.6.2153-2162.2002] [DOI:10.1128/JCM.40.6.2153-2162.2002] [PMID] [PMCID]
17. Wasfi R, Elkhatib WF, Ashour HM. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep 2016.;6:38929. [DOI:10.1038/srep38929] [DOI:10.1038/srep38929] [PMID] [PMCID]
18. Dalmolin TV, Bianchini BV, Rossi GG, et al. Detection and analysis of different interactions between resistance mechanisms and carbapenems in clinical isolates of Klebsiella pneumoniae. Braz J Microbiol. 2017; 48(3): 493-98. [DOI:10.1016/j.bjm.2017.01.003] [DOI:10.1016/j.bjm.2017.01.003] [PMID] [PMCID]
19. Peirano G: Multi resistant Enterobacteriaceae new threat to an old problem; expect review of anti infective therapy. Expert Rev Anti Infect Ther. 2008; 6(5): 657-69. [DOI:10.1586/14787210.6.5.657] [DOI:10.1586/14787210.6.5.657] [PMID]
20. Shi WF, Zhou J, Qin JP. Transconjugation and geno¬typing of the plasmid mediated AmpC beta lactamase and extended spectrum beta lactamase genes in Klebsiella pneumoniae. Chin Med J (Engl). 2009; 122: 1092-96.
21. Azimi L, Erajiyan G, Talebi M, et al. Phenotypic and molecular characterization of plasmid mediated AmpC among clinical isolates of Klebsiella pneumoniae isolated from different hospitals in Tehran. J Clin Diagn Res. 2015;9(4):DC01-3. [DOI:10.7860/JCDR/2014/11037.5797] [DOI:10.7860/JCDR/2014/11037.5797]
22. Shafiq M, Rahman H, Qasim M, et al. Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae at tertiary care hospital of Islamabad, Pakistan. Eur J Microbiol Immunol. 2013;(3): 267-71. [DOI:10.1556/EuJMI.3.2013.4.5] [DOI:10.1556/EuJMI.3.2013.4.5] [PMID] [PMCID]
23. Mohamudha PR, Harish BN, Parija SC. Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumoniae from six different hospitals in India. Indian J Med Res. 2012; 135(1): 114-19. [DOI:10.4103/0971-5916.93433] [DOI:10.4103/0971-5916.93433] [PMID] [PMCID]
24. Lee K, Lee M, Shin JH, et al. Prevalence of plasmid-mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb Drug Resist. 2006; 12(1): 44-49. [DOI:10.1089/mdr.2006.12.44] [DOI:10.1089/mdr.2006.12.44] [PMID]
25. Ghanavati R, Darban-Sarokhalil D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta Microbiol Immunol Hung. 2017; 64(4): 455-62. [DOI:10.1556/030.64.2017.028] [DOI:10.1556/030.64.2017.028] [PMID]
26. Ghasemian A, Shafiei M, Eslami M, Vafaei M, Nojoom F, Rajabi-Vardanjani H. Molecular typing of Klebsiella pneumoniae isolates using repetitive extragenic palindromic sequence-based PCR in a hospital in Tehran, Iran. Int J Enteric Pathog. 2018; 6(1): 27-30. [DOI:10.15171/ijep.2018.07] [DOI:10.15171/ijep.2018.07]
27. Cabral AB, Melo Rde C, Maciel MA, Lopes AC. Multidrug resistance genes, including bla (KPC) and bla (CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012; 45(5): 572-78. [DOI:10.1590/S0037-86822012000500007] [DOI:10.1590/S0037-86822012000500007] [PMID]
28. Yan JJ, Hsueh PR, Lu JJ, et al. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother. 2006; 50(5): 1861-64. [DOI:10.1128/AAC.50.5.1861-1864.2006] [DOI:10.1128/AAC.50.5.1861-1864.2006] [PMID] [PMCID]
29. Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi E. Genetic diversity study of various β-lactamase-producing multidrug-resistant Escherichia coli isolates from a tertiary care hospital using ERIC-PCR. Indian J Med Res. 2017;146 (Supplement):S23-S29. [DOI:10.4103/ijmr.IJMR_575_16] [DOI:10.4103/ijmr.IJMR_575_16] [PMID] [PMCID]
30. Lim KT, Yeo CC, Yasin RM, Balan G, Thong KL. Characterization of multidrug-resistant and extended-spectrum b-lactamase-producing Klebsiella pneumoniae strains from Malaysian hospitals. J Med Microbiol. 2009; 58: 1463-69. [DOI:10.1099/jmm.0.011114-0] [DOI:10.1099/jmm.0.011114-0] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb