1. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. [DOI:10.1038/bcj.2016.50] [
DOI:10.1038/bcj.2016.50] [
PMID] [
PMCID]
2. Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia.Hematology Am Soc Hematol Educ Program. 2004;2004(1):80-97. [DOI:10.1182/asheducation-2004.1.80] [
DOI:10.1182/asheducation-2004.1.80] [
PMID]
3. Mortazavi Y, Jameshorani M, Zand H, Rostami S. Association of G15631T, CYP2B6 gene polymorphism with susceptibility to acute myeloid leukemia. J Adv Med Biomed Res. 2016;24(103):32-41.
4. Zhou Y, Kaiser T, Monteiro P, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89(1):147-62. [DOI:10.1016/j.neuron.2015.11.023] [
DOI:10.1016/j.neuron.2015.11.023] [
PMID] [
PMCID]
5. Küry S, van Woerden GM, Besnard T, et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am J Human Genetics. 2017;101(5):768-88. [DOI:10.1016/j.ajhg.2017.10.003] [
DOI:10.1016/j.ajhg.2017.10.003] [
PMID] [
PMCID]
6. Goin-Kochel RP, Trinh S, Barber S, Bernier R. Gene disrupting mutations associated with regression in autism spectrum disorder. J Autism Develop Disorder. 2017;47(11):3600-7. [DOI:10.1007/s10803-017-3256-4] [
DOI:10.1007/s10803-017-3256-4] [
PMID] [
PMCID]
7. Hornung R, Jurinovic V, Batcha AM, et al. Mediation analysis reveals common mechanisms of RUNX1 point mutations and RUNX1/RUNX1T1 fusions influencing survival of patients with acute myeloid leukemia. Scientific Report. 2018;8(1):11293. [DOI:10.1038/s41598-018-29593-2] [
DOI:10.1038/s41598-018-29593-2] [
PMID] [
PMCID]
8. Ardestani M, chahardouli b, Mohammadi S, et al. Detection of R882 mutations in DNMT3A gene in acute myeloid leukemia: A method comparison study. Iran J Pediatr Hematol Oncol. 2018;8(3):172-9.
9. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease: Presented in part at the 42nd annual meeting of the American Society of Hematology, December 1-5, 2000, San Francisco, CA (abstract 3569). Blood. 2002;100(1):59-66. [DOI:10.1182/blood.V100.1.59] [
DOI:10.1182/blood.V100.1.59] [
PMID]
10. Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333. [DOI:10.1038/sj.leu.2401130] [
DOI:10.1038/sj.leu.2401130] [
PMID]
11. Sallmyr A, Fan J, Datta K, et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008;111(6):3173-82. [DOI:10.1182/blood-2007-05-092510] [
DOI:10.1182/blood-2007-05-092510] [
PMID]
12. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752-9. [DOI:10.1182/blood.V98.6.1752] [
DOI:10.1182/blood.V98.6.1752] [
PMID]
13. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis: Presented in part at the 42nd Annual Meeting of the American Society of Hematology, December 1-5, 2000, San Francisco, CA (abstract 2334). Blood. 2002;99(12):4326-35. [DOI:10.1182/blood.V99.12.4326] [
DOI:10.1182/blood.V99.12.4326] [
PMID]
14. Fröhling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13):4372-80. [DOI:10.1182/blood-2002-05-1440] [
DOI:10.1182/blood-2002-05-1440] [
PMID]
15. Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leukemia Res. 2001;25(12):1085-8. [DOI:10.1016/S0145-2126(01)00087-X] [
DOI:10.1016/S0145-2126(01)00087-X]
16. Ardestani MT, Kazemi A, Chahardouli B, et al. FLT3-ITD compared with DNMT3A R882 mutation is a more powerful independent inferior prognostic factor in adult acute myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation: A retrospective cohort study. Turkish J Haematol. 2018;35(3):158-67. [DOI:10.4274/tjh.2018.0017] [
DOI:10.4274/tjh.2018.0017] [
PMID] [
PMCID]
17. Grunwald MR, Tseng LH, Lin MT, et al. Improved FLT3/ITD PCR assay predicts outcome following allogeneic transplant for AML. Biol Blood Bone Marrow Transplant. 2014;20(12):1989-95. [DOI:10.1016/j.bbmt.2014.08.015] [
DOI:10.1016/j.bbmt.2014.08.015] [
PMID] [
PMCID]
18. Kayser S, Walter RB, Stock W, Schlenk RF. Minimal residual disease in acute myeloid leukemia-current status and future perspectives. Curr Hematol Malig Rep. 2015;10(2):132-44. [DOI:10.1007/s11899-015-0260-7] [
DOI:10.1007/s11899-015-0260-7] [
PMID]
19. Beierl K, Tseng LH, Beierl R, et al. Detection of minor clones with internal tandem duplication mutations of FLT3 gene in acute myeloid leukemia using delta-PCR. Diag Molec Pathol. 2013;22(1):1-9. [DOI:10.1097/PDM.0b013e31825d81f4] [
DOI:10.1097/PDM.0b013e31825d81f4] [
PMID]
20. Kronke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011;29(19):2709-16. [DOI:10.1200/JCO.2011.35.0371] [
DOI:10.1200/JCO.2011.35.0371] [
PMID]
21. Schiller J, Praulich I, Krings Rocha C, Kreuzer KA. Patient-specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Europe J Haematol. 2012;89(1):53-62. [DOI:10.1111/j.1600-0609.2012.01785.x] [
DOI:10.1111/j.1600-0609.2012.01785.x] [
PMID]
22. Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826-35. [DOI:10.1182/blood-2012-06-435669] [
DOI:10.1182/blood-2012-06-435669] [
PMID]
23. Levis MJ, Perl AE, Altman JK, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018;2(8):825-31. [DOI:10.1182/bloodadvances.2018015925] [
DOI:10.1182/bloodadvances.2018015925] [
PMID] [
PMCID]
24. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leukemia &Lymphoma. 2017:1-14. [DOI:10.1080/10428194.2017.1399312] [
DOI:10.1080/10428194.2017.1399312] [
PMID]
25. Wan L, Xu M, Chen J, et al. Pretransplant FLT3-ITD levels predict outcome after allogeneic hematopoietic cell transplantation for AML patients in the first remission. Bone marrow Transplant. 2019. [DOI:10.1038/s41409-019-0576-3] [
DOI:10.1038/s41409-019-0576-3]
26. Dhillon S. Gilteritinib: First Global Approval. Drugs. 2019;79(3):331-9. [DOI:10.1007/s40265-019-1062-3] [
DOI:10.1007/s40265-019-1062-3] [
PMID]
27. Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20(7):1217-20. [DOI:10.1038/sj.leu.2404246] [
DOI:10.1038/sj.leu.2404246] [
PMID]
28. Santos FP, Jones D, Qiao W, et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer. 2011;117(10):2145-55. [DOI:10.1002/cncr.25670] [
DOI:10.1002/cncr.25670] [
PMID] [
PMCID]
29. Oran B, Cortes J, Beitinjaneh A, et al. Allogeneic transplantation in frst remission improves outcomes irrespective of FLT3-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22(7):1218-26. [DOI:10.1016/j.bbmt.2016.03.027] [
DOI:10.1016/j.bbmt.2016.03.027] [
PMID] [
PMCID]
30. Kim Y, Lee G, Park J, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5(8):e336. [DOI:10.1038/bcj.2015.61] [
DOI:10.1038/bcj.2015.61] [
PMID] [
PMCID]
31. Zuffa E, Franchini E, Papayannidis C, et al. Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients. Oncotarget. 2015;6(31):31284-94. [DOI:10.18632/oncotarget.5161] [
DOI:10.18632/oncotarget.5161] [
PMID] [
PMCID]
32. Koszarska M, Meggyesi N, Bors A, et al. Medium-sized FLT3 internal tandem duplications confer worse prognosis than short and long duplications in a non-elderly acute myeloid leukemia cohort. Leukemia & Lymphoma. 2014;55(7):1510-7. [DOI:10.3109/10428194.2013.850163] [
DOI:10.3109/10428194.2013.850163] [
PMID]