Volume 27, Issue 123 (July & August 2019)                   J Adv Med Biomed Res 2019, 27(123): 38-44 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arab M, Rostami S, Alizad Ghandforoush N, Nikbakht M, Mohammadi S, Samemaleki A, et al . Comparison of Delta- PCR and Conventional Fragment Analysis for the Detection of FLT3-ITD Mutations in Paired Diagnosis-Relapse Samples of Patients with Acute Myeloid Leukemia. J Adv Med Biomed Res 2019; 27 (123) :38-44
URL: http://journal.zums.ac.ir/article-1-5643-en.html
1- Dept. of Hematology and Blood Banking, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
2- Hematology, Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
3- Associate Professor
4- Assistant professor , Chbahram@yahoo.com
Abstract:   (146039 Views)

Background & Objective: FLT3-ITD mutation detection has been an integral part of diagnostic work ups focused on acute myeloid leukemia. However, some studies have indicated that the mutation is unstable during the various stages of the disease. The purpose of this study was to evaluate the stability of this marker in paired diagnosis-relapse samples using Delta-PCR method.
Materials & Methods: In this retrospective study, paired diagnosis-relapse bone marrow or peripheral blood samples from 180 adult AML patients were analyzed for FLT3-ITD mutations using conventional fragment analysis and Delta-PCR methods. A dilutional experiment of DNA derived from a FLT3-ITD mutated patient in normal peripheral blood was performed in order to evaluate the sensitivity of each method.
Results: All samples were analyzed using both conventional fragment analysis and Delta-PCR methods. FLT3-ITD mutations were detected in 24 diagnostic samples (13.3%) and 28 relapse samples (15.5 %) through conventional fragment analysis. Three out of four patients who were FLT3-ITD positive in the relapse samples had a mutation in the diagnostic samples using the Delta-PCR method. On the other hand, at the time of diagnosis and relapse, the mutation test results were incompatible in only 3.6% of patients based on the results of the Delta-PCR method compared to 14.2 based on conventional fragment analysis. Our findings revealed that the sensitivity of Delta - PCR as related to FLT3-ITD detection was 0.2 %. Compared to the conventional fragment analysis, with a sensitivity of 2%, Delta - PCR shows greater sensitivity and specificity.
Conclusion: The conventional testing of the FLT3-ITD mutation by fragment analysis did not detect a significant proportion (11%) of FLT3-ITD positive samples in AML patients. Delta PCR increased the sensitivity and specificity relative to the conventional method. The detection of FLT3-ITD mutation through Delta PCR is important in order to detect minor clones at diagnosis or during the monitoring of AML patients.

Full-Text [PDF 611 kb]   (156044 Downloads) |   |   Full-Text (HTML)  (3409 Views)  

The conventional testing of the FLT3-ITD mutation by fragment analysis did not detect a significant proportion (11%) of FLT3-ITD positive samples in AML patients. Delta PCR increased the sensitivity and specificity relative to the conventional method. The detection of FLT3-ITD mutation through Delta PCR is important in order to detect minor clones at diagnosis or during the monitoring of AML patients.


Type of Study: Original Article | Subject: Medical Biology
Received: 2019/02/13 | Accepted: 2019/05/20 | Published: 2019/07/1

References
1. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. [DOI:10.1038/bcj.2016.50] [DOI:10.1038/bcj.2016.50] [PMID] [PMCID]
2. Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia.Hematology Am Soc Hematol Educ Program. 2004;2004(1):80-97. [DOI:10.1182/asheducation-2004.1.80] [DOI:10.1182/asheducation-2004.1.80] [PMID]
3. Mortazavi Y, Jameshorani M, Zand H, Rostami S. Association of G15631T, CYP2B6 gene polymorphism with susceptibility to acute myeloid leukemia. J Adv Med Biomed Res. 2016;24(103):32-41.
4. Zhou Y, Kaiser T, Monteiro P, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89(1):147-62. [DOI:10.1016/j.neuron.2015.11.023] [DOI:10.1016/j.neuron.2015.11.023] [PMID] [PMCID]
5. Küry S, van Woerden GM, Besnard T, et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am J Human Genetics. 2017;101(5):768-88. [DOI:10.1016/j.ajhg.2017.10.003] [DOI:10.1016/j.ajhg.2017.10.003] [PMID] [PMCID]
6. Goin-Kochel RP, Trinh S, Barber S, Bernier R. Gene disrupting mutations associated with regression in autism spectrum disorder. J Autism Develop Disorder. 2017;47(11):3600-7. [DOI:10.1007/s10803-017-3256-4] [DOI:10.1007/s10803-017-3256-4] [PMID] [PMCID]
7. Hornung R, Jurinovic V, Batcha AM, et al. Mediation analysis reveals common mechanisms of RUNX1 point mutations and RUNX1/RUNX1T1 fusions influencing survival of patients with acute myeloid leukemia. Scientific Report. 2018;8(1):11293. [DOI:10.1038/s41598-018-29593-2] [DOI:10.1038/s41598-018-29593-2] [PMID] [PMCID]
8. Ardestani M, chahardouli b, Mohammadi S, et al. Detection of R882 mutations in DNMT3A gene in acute myeloid leukemia: A method comparison study. Iran J Pediatr Hematol Oncol. 2018;8(3):172-9.
9. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease: Presented in part at the 42nd annual meeting of the American Society of Hematology, December 1-5, 2000, San Francisco, CA (abstract 3569). Blood. 2002;100(1):59-66. [DOI:10.1182/blood.V100.1.59] [DOI:10.1182/blood.V100.1.59] [PMID]
10. Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333. [DOI:10.1038/sj.leu.2401130] [DOI:10.1038/sj.leu.2401130] [PMID]
11. Sallmyr A, Fan J, Datta K, et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008;111(6):3173-82. [DOI:10.1182/blood-2007-05-092510] [DOI:10.1182/blood-2007-05-092510] [PMID]
12. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752-9. [DOI:10.1182/blood.V98.6.1752] [DOI:10.1182/blood.V98.6.1752] [PMID]
13. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis: Presented in part at the 42nd Annual Meeting of the American Society of Hematology, December 1-5, 2000, San Francisco, CA (abstract 2334). Blood. 2002;99(12):4326-35. [DOI:10.1182/blood.V99.12.4326] [DOI:10.1182/blood.V99.12.4326] [PMID]
14. Fröhling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13):4372-80. [DOI:10.1182/blood-2002-05-1440] [DOI:10.1182/blood-2002-05-1440] [PMID]
15. Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leukemia Res. 2001;25(12):1085-8. [DOI:10.1016/S0145-2126(01)00087-X] [DOI:10.1016/S0145-2126(01)00087-X]
16. Ardestani MT, Kazemi A, Chahardouli B, et al. FLT3-ITD compared with DNMT3A R882 mutation is a more powerful independent inferior prognostic factor in adult acute myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation: A retrospective cohort study. Turkish J Haematol. 2018;35(3):158-67. [DOI:10.4274/tjh.2018.0017] [DOI:10.4274/tjh.2018.0017] [PMID] [PMCID]
17. Grunwald MR, Tseng LH, Lin MT, et al. Improved FLT3/ITD PCR assay predicts outcome following allogeneic transplant for AML. Biol Blood Bone Marrow Transplant. 2014;20(12):1989-95. [DOI:10.1016/j.bbmt.2014.08.015] [DOI:10.1016/j.bbmt.2014.08.015] [PMID] [PMCID]
18. Kayser S, Walter RB, Stock W, Schlenk RF. Minimal residual disease in acute myeloid leukemia-current status and future perspectives. Curr Hematol Malig Rep. 2015;10(2):132-44. [DOI:10.1007/s11899-015-0260-7] [DOI:10.1007/s11899-015-0260-7] [PMID]
19. Beierl K, Tseng LH, Beierl R, et al. Detection of minor clones with internal tandem duplication mutations of FLT3 gene in acute myeloid leukemia using delta-PCR. Diag Molec Pathol. 2013;22(1):1-9. [DOI:10.1097/PDM.0b013e31825d81f4] [DOI:10.1097/PDM.0b013e31825d81f4] [PMID]
20. Kronke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011;29(19):2709-16. [DOI:10.1200/JCO.2011.35.0371] [DOI:10.1200/JCO.2011.35.0371] [PMID]
21. Schiller J, Praulich I, Krings Rocha C, Kreuzer KA. Patient-specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Europe J Haematol. 2012;89(1):53-62. [DOI:10.1111/j.1600-0609.2012.01785.x] [DOI:10.1111/j.1600-0609.2012.01785.x] [PMID]
22. Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826-35. [DOI:10.1182/blood-2012-06-435669] [DOI:10.1182/blood-2012-06-435669] [PMID]
23. Levis MJ, Perl AE, Altman JK, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018;2(8):825-31. [DOI:10.1182/bloodadvances.2018015925] [DOI:10.1182/bloodadvances.2018015925] [PMID] [PMCID]
24. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leukemia &Lymphoma. 2017:1-14. [DOI:10.1080/10428194.2017.1399312] [DOI:10.1080/10428194.2017.1399312] [PMID]
25. Wan L, Xu M, Chen J, et al. Pretransplant FLT3-ITD levels predict outcome after allogeneic hematopoietic cell transplantation for AML patients in the first remission. Bone marrow Transplant. 2019. [DOI:10.1038/s41409-019-0576-3] [DOI:10.1038/s41409-019-0576-3]
26. Dhillon S. Gilteritinib: First Global Approval. Drugs. 2019;79(3):331-9. [DOI:10.1007/s40265-019-1062-3] [DOI:10.1007/s40265-019-1062-3] [PMID]
27. Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20(7):1217-20. [DOI:10.1038/sj.leu.2404246] [DOI:10.1038/sj.leu.2404246] [PMID]
28. Santos FP, Jones D, Qiao W, et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer. 2011;117(10):2145-55. [DOI:10.1002/cncr.25670] [DOI:10.1002/cncr.25670] [PMID] [PMCID]
29. Oran B, Cortes J, Beitinjaneh A, et al. Allogeneic transplantation in frst remission improves outcomes irrespective of FLT3-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22(7):1218-26. [DOI:10.1016/j.bbmt.2016.03.027] [DOI:10.1016/j.bbmt.2016.03.027] [PMID] [PMCID]
30. Kim Y, Lee G, Park J, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5(8):e336. [DOI:10.1038/bcj.2015.61] [DOI:10.1038/bcj.2015.61] [PMID] [PMCID]
31. Zuffa E, Franchini E, Papayannidis C, et al. Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients. Oncotarget. 2015;6(31):31284-94. [DOI:10.18632/oncotarget.5161] [DOI:10.18632/oncotarget.5161] [PMID] [PMCID]
32. Koszarska M, Meggyesi N, Bors A, et al. Medium-sized FLT3 internal tandem duplications confer worse prognosis than short and long duplications in a non-elderly acute myeloid leukemia cohort. Leukemia & Lymphoma. 2014;55(7):1510-7. [DOI:10.3109/10428194.2013.850163] [DOI:10.3109/10428194.2013.850163] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb