Volume 27, Issue 125 (November & December 2019)                   J Adv Med Biomed Res 2019, 27(125): 34-42 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Porbaran M, Habibipour R. Biofilm Formation and β-lactamase Enzymes: A Synergism Activity in Acinetobacter baumannii Isolated from Wound Infection. J Adv Med Biomed Res 2019; 27 (125) :34-42
URL: http://journal.zums.ac.ir/article-1-5795-en.html
1- Department of Microbiology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
2- Department of Microbiology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran , habibipour.r@gmail.com
Abstract:   (146168 Views)

Background and Objective: Biofilm formation plays a crucial role in wound infections and increases the bacteria resistance to treatment. The present study investigated the relationship between the biofilm formation, ESBL, AmpC, and KPC enzymes in Acinetobacter baumannii isolated from the wound specimens.
Materials and Methods: Eighty- nine A. baumannii isolates were collected from wound specimens and were confirmed by different biochemical tests. The biofilm-producing strains were identified using the crystal violet method. The producing strains of KPC, ESBL, and AmpC β-lactamase enzymes were detected through phenotypic tests. Further, the PCR method was employed to identify the ESBL, KPC, and AmpC. The Chi-square test and SPSS 16 were used for data analysis.
Results: Among 89 wound isolates, 21 and 68 were collected from male and female patients, respectively. The strains resistant to ciprofloxacin (69.66%) and gentamicin (66.29%) were the most frequent strains while ceftazidime (7.86%) and colistin (1.12%) resistant strains had the lowest frequency. Furthermore, 40 isolates were considered as ESBL-producing enzymes, 33 isolates as AmpC, and 26 isolates as KPC-producing enzymes. In addition, the isolates were categorized as strong biofilms with 20 isolates, moderate biofilms with 19 isolates, and weak biofilm-producing strains with 10 isolates. The distribution of the β-lactamase genes in A. baumannii isolates was blaVEB (34.83%), blaPER (32.58%), blaFOX (29.21%), blaADC (30.33%), blaIMP (28.08%), and blaKPC (22.47%).
Conclusion: Our results demonstrated that isolates with a higher level of antibiotic resistance tended to form stronger biofilms. Likewise, the results showed that the relationship between biofilm formation and antibiotic resistance might be affected by the type of β-lactamase enzyme in wound infection.

Full-Text [PDF 500 kb]   (155776 Downloads) |   |   Full-Text (HTML)  (3280 Views)  

Our results demonstrated that isolates with a higher level of antibiotic resistance tended to form stronger biofilms. Likewise, the results showed that the relationship between biofilm formation and antibiotic resistance might be affected by the type of β-lactamase enzyme in wound infection.


Type of Study: Original Research Article | Subject: Medical Biology
Received: 2019/10/6 | Accepted: 2019/11/2 | Published: 2019/11/10

References
1. Liu Y, Liu X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance. Exp Ther Med. 2015;10(3):933-6. [DOI:10.3892/etm.2015.2612] [PMID] [PMCID]
2. Fallah F, Noori M, Hashemi A, et al. Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica. 2014;2014:245162- [DOI:10.1155/2014/245162] [PMID] [PMCID]
3. Chang Y, Luan G, Xu Y, et al. Characterization of carbapenem-resistant Acinetobacter baumannii isolates in a Chinese teaching hospital. Front Microbiol. 2015;6:910-.doi: 10.3389/fmicb.2015.00910. [DOI:10.3389/fmicb.2015.00910]
4. Tahmasebi H, Maleki F, Dehbashi S, Arabestani MR. Role and function of KPC and MBL enzymes in increasing the pathogenicity of pseudomonas aeruginosa isolated from burn wounds. J Babol Univ Med Sci. 2019;21(1):127-34.
5. Singla P, Sikka R, Deeep A, Gagneja D, Chaudhary U. Co-production of ESBL and AmpC β-lactamases in Clinical isolates of A. baumannii and A. lwoffii in a tertiary care hospital from Northern India. J Clin Diag Res. 2014;8(4):DC16-DC9. [DOI:10.7860/JCDR/2014/8008.4289] [PMID] [PMCID]
6. Uwingabiye J, Frikh M, Lemnouer A, et al. Acinetobacter infections prevalence and frequency of the antibiotics resistance: comparative study of intensive care units versus other hospital units. Pan African Med J. 2016;23:191. [DOI:10.11604/pamj.2016.23.191.7915] [PMID] [PMCID]
7. Rahimi S, Farshadzadeh Z, Taheri B, Mohammadi M, Haghighi M, Bahador A. The relationship between antibiotic resistance phenotypes and biofilm formation capacity in clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2018;11(8):e74315. [DOI:10.5812/jjm.74315]
8. Rao RS, Karthika RU, Singh SP, et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol. 2008;26(4):333-7. [DOI:10.4103/0255-0857.43566] [PMID]
9. Hatami Moghadam R, Alvandi A, Akbari N, Jafari P, Abiri R. Assessment of biofilm formation among clinical isolates of Acinetobacter baumannii in burn wounds in the west of Iran. Cell Mol Biol (Noisy-le-grand). 2018;64(15):30-4. [DOI:10.14715/cmb/2017.64.15.5]
10. Dehbashi S, Tahmasebi H, Arabestani MR. Association between Beta-lactam Antibiotic resistance and virulence factors in AmpC producing clinical strains of P. aeruginosa. Osong Public Health Res Perspect. 2018;9(6):325-33. [DOI:10.24171/j.phrp.2018.9.6.06] [PMID] [PMCID]
11. Al-Agamy MH, Khalaf NG, Tawfick MM, Shibl AM, Kholy AE. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int J Infect Dis. 2014;22:49-54. [DOI:10.1016/j.ijid.2013.12.004] [PMID]
12. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969-76. [DOI:10.1128/AAC.01009-09] [PMID] [PMCID]
13. Tahmasebi H, Dehbashi S, Arabestani MR. High resolution melting curve analysis method for detecting of carbapenemases producing pseudomonas aeruginosa.J Krishna Inst Med Sci Univ. 2018;7(4):70-7.
14. Moubareck C, Bremont S, Conroy MC, Courvalin P, Lambert T. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(8):3579-81. [DOI:10.1128/AAC.00072-09] [PMID] [PMCID]
15. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol. 2003;41(8):3542-7. [DOI:10.1128/JCM.41.8.3542-3547.2003] [PMID] [PMCID]
16. Tahmasebi H, Yousef Alikhani M, Dehbashi S, Arabestani MR. Investigation of the relationship between the presence of chromosomal and plasmid-encoded ampc genes and type of clinical specimen in pseudomonas aeruginosa. J Babol Univ Med Sci. 2018;20(3):36-43.
17. Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-10th ed. M07-A11. Clinical and Laboratory Standards Institute, Wayne, PA
18. Ghadaksaz A, Imani Fooladi AA, Hosseini HM, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Apply Biomed. 2015;13(1):61-8. [DOI:10.1016/j.jab.2014.05.002]
19. Chen LK, Kuo SC, Chang KC, et al. Clinical antibiotic-resistant Acinetobacter baumannii strains with higher susceptibility to environmental phages than antibiotic-sensitive strains. Sci Rep. 2017;7(1):6319-. [DOI:10.1038/s41598-017-06688-w] [PMID] [PMCID]
20. Almaghrabi MK, Joseph MRP, Assiry MM, Hamid ME. Multidrug-resistant Acinetobacter baumannii: An emerging health threat in aseer region, Kingdom of Saudi Arabia. Canadian J Infect Dis Med Microbiol. 2018;2018:4. [DOI:10.1155/2018/9182747] [PMID] [PMCID]
21. Simo Tchuinte PL, Rabenandrasana MAN, Kowalewicz C, et al. Phenotypic and molecular characterisations of carbapenem-resistant Acinetobacter baumannii strains isolated in Madagascar. Antimicrob Resist Infect Control. 2019;8(1):31. [DOI:10.1186/s13756-019-0491-9] [PMID] [PMCID]
22. Xie R, Zhang XD, Zhao Q, Peng B, Zheng J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg Microbes Infect. 2018;7(1):31-. [DOI:10.1038/s41426-018-0038-9] [PMID] [PMCID]
23. Kuti JL, Wang Q, Chen H, Li H, Wang H, Nicolau DP. Defining the potency of amikacin against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii derived from Chinese hospitals using CLSI and inhalation-based breakpoints. Infect Drug Resistance. 2018;11:783-90. [DOI:10.2147/IDR.S161636] [PMID] [PMCID]
24. Ramadan RA, Gebriel MG, Kadry HM, Mosallem A. Carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: characterization of carbapenemase genes and E-test evaluation of colistin-based combinations. Infect Drug Resist. 2018;11:1261-9. [DOI:10.2147/IDR.S170233] [PMID] [PMCID]
25. Kumar E, Usha K, Chaudhury A, Ramana BV, Gopal DVRS. Detection of AmpC β-lactamases production in Acinetobacter species by inhibitor (disk) based & modified three dimensional (enzyme extraction) methods. IndianJ Med Res. 2014;140(5):688-90.
26. Begum S, Hasan F, Hussain S, Ali Shah A. Prevalence of multi drug resistant Acinetobacter baumannii in the clinical samples from Tertiary Care Hospital in Islamabad, Pakistan. Pakistan J Med Sci. 2013;29(5):1253-8. [DOI:10.12669/pjms.295.3695] [PMID] [PMCID]
27. Khajuria A, Praharaj AK, Kumar M, Grover N. Molecular characterization of carbapenem resistant isolates of Acinetobacter baumannii in an intensive care unit of A Tertiary Care Centre at Central India. J Clin Diag Res. 2014;8(5):DC38-DC40. [DOI:10.7860/JCDR/2014/7749.4398] [PMID] [PMCID]
28. Lai JH, Yang JT, Chern J, et al. Comparative phosphoproteomics reveals the role of AmpC β-lactamase phosphorylation in the clinical imipenem-resistant strain Acinetobacter baumannii SK17. Mol Cell Proteomics. 2016;15(1):12-25. [DOI:10.1074/mcp.M115.051052] [PMID] [PMCID]
29. Shacheraghi F, Shakibaie MR, Noveiri H. Molecular identification of ESBL genes blaGES-1 blaVEB-1, blaCTX-M blaOXA-1, blaOXA-4, blaOXA-10 and blaPER-1 in Pseudomonas aeruginosa strains isolated from burn patients by PCR, RFLP and sequencing techniques. Int J Biol Life Sci. 2010;6:138-42.
30. Alkasaby NM, El Sayed Zaki M. Molecular study of Acinetobacter baumannii isolates for metallo-β-lactamases and extended-spectrum-β-lactamases genes in intensive care unit, Mansoura University Hospital, Egypt. Int J Microbiol. 2017;2017:3925868-. [DOI:10.1155/2017/3925868] [PMID] [PMCID]
31. Ribeiro PCS, Monteiro AS, Marques SG, et al. Phenotypic and molecular detection of the blaKPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil. BMC Infect Dis. 2016;16(1):737. [DOI:10.1186/s12879-016-2072-3] [PMID] [PMCID]
32. Yang CH, Su PW, Moi SH, Chuang LY. Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules. 2019;24(10):1849. [DOI:10.3390/molecules24101849] [PMID] [PMCID]
33. Lee HW, Koh YM, Kim J, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008;14(1):49-54. [DOI:10.1111/j.1469-0691.2007.01842.x] [PMID]
34. Avila-Novoa M, Solís-Velázquez OA, Rangel-López DE, González-Gómez JP, Guerrero-Medina PJ, Gutiérrez-Lomelí M. Biofilm formation and detection of fluoroquinolone- and carbapenem-resistant genes in multidrug-resistant Acinetobacter baumannii. Can J Infect Dis Med Microbiol. 2019;2019:1-5. [DOI:10.1155/2019/3454907] [PMID] [PMCID]
35. Qi L, Li H, Zhang C, et al. Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol. 2016;7:483. [DOI:10.3389/fmicb.2016.00483] [PMID] [PMCID]
36. Wang YC, Huang TW, Yang YS, et al. Biofilm formation is not associated with worse outcome in Acinetobacter baumannii bacteraemic pneumonia. Sci Rep. 2018;8(1):7289. [DOI:10.1038/s41598-018-25661-9] [PMID] [PMCID]
37. Kiamco MM, Atci E, Mohamed A, Call DR, Beyenal H. Hyperosmotic agents and antibiotics affect dissolved oxygen and PH concentration gradients in Staphylococcus aureus biofilms. Appl Environ Microbiol. 2017;83(6). pii: e02783-16. [DOI:10.1128/AEM.02783-16] [PMID] [PMCID]
38. Cohen BE. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery. Antimicrob Agents Chemother. 2014;58(2):640-6. [DOI:10.1128/AAC.02095-13] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb