Volume 28, Issue 130 (September & October 2020)                   J Adv Med Biomed Res 2020, 28(130): 291-295 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashidi M, Ahmadi A, Ramazanzadeh R, Noori B, Shafiee F. Probiotic Enterococcus durans Interference with Oral Candida albicans Adhesion: An in vitro Study. J Adv Med Biomed Res 2020; 28 (130) :291-295
URL: http://journal.zums.ac.ir/article-1-6055-en.html
1- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
2- Dept. of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
3- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
4- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
5- Dept. of Pediatric Dentistry, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran , faranakshafiee@gmail.com
Abstract:   (142656 Views)
Background and Objectives: Candida species is one of the commensal microorganisms and a member of the oral cavity normal flora. In addition, Candida albicans is a microbiologic member of the oral cavity in children with dental caries. Currently, use of probiotics as a new biologic technique has attracted attention in order to prevent and control diseases. Enterococcus durans has shown useful antioxidative properties and antibacterial and probiotic characteristics. The aim of this study was to evaluate the effect of probiotic Enterococcus durans on adhesion of Candida albicans in in vitro.
 
Materials and Methods: In this in vitro study, the standard strain bacteria of probiotic E. durans (ATCC 6056) and Candida albicans (PTCC5027) and 10 clinical samples of Candida albicans is provided. The adhesive inhibition of Candida albicans via microtiter plate was tested.  Data were analyzed with repeated measure model. Statistical significance was set at P<0.01
Results: This study showed that, Mean OD620 nm were in range of 0.45 to 0.49 and for OD490 nm were 0.33. Therefore, in presence of the probiotic strain, the biofilm of Candida albicans adhesion were reduced.
Conclusion: The first step in infection process is attachment and the adhesion                  of Candida albicans can be prohibited by use of probiotic such as E. durans.
Full-Text [PDF 311 kb]   (155330 Downloads) |   |   Full-Text (HTML)  (3574 Views)  
Type of Study: Original Article | Subject: Clinical medicine
Received: 2020/06/8 | Accepted: 2020/07/21 | Published: 2020/09/21

References
1. Jørgensen MR, Kragelund C, Jensen PØ, Keller MK, Twetman S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J Oral Microbiol. 2017;9(1):1274582. [DOI:10.1080/20002297.2016.1274582]
2. de Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DMP. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol. 2006;51(11):1024-8. [DOI:10.1016/j.archoralbio.2006.06.001]
3. Ellepola A, Samaranayake L. Oral candidal infections and antimycotics. Crit Rev Oral Biol Med. 2000;11(2):172-98. [DOI:10.1177/10454411000110020301]
4. Gomes R, Miyazak M, Filho IJZ. Action of probiotics on oral pathogens: Efficacy and controversies. Constitution. 2015;2:3. [DOI:10.15761/DOCR.1000129]
5. Ghasempour M, Sefidgar A, Gharekhani S, Shirkhani L, Moghadamnia A. Comparison of the effect of probiotic yogurt-drink kefir,% 0.2 chlorhexidine and% 0.2 sodium fluoride mouthwashes on streptococcus mutans: An In vitro study. J Babol Univ Med Sci. 2013;15(6):8-12.
6. Suzuki N, Yoneda M, Hatano Y, Iwamoto T, Masuo Y, Hirofuji T. Enterococcus faecium WB2000 inhibits biofilm formation by oral cariogenic Streptococci. Int J Dent. 2011;2011:834151. [DOI:10.1155/2011/834151]
7. Carasi P, Jacquot C, Romanin DE, et al. Safety and potential beneficial properties of Enterococcus strains isolated from kefir. Int Dairy J. 2014;39(1):193-200. [DOI:10.1016/j.idairyj.2014.06.009]
8. Pavli F, Argyri A, Papadopoulou O, Nychas G, Chorianopoulos N, Tassou C. Probiotic potential of lactic acid bacteria from traditional fermented dairy and meat products: Assessment by in vitro tests and molecular characterization. J Prob Health. 2016;4(157):10.4172.
9. Pieniz S, de Moura TM, Cassenego APV, et al. Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with potential probiotic effect. Food Control. 2015;51:49-54. [DOI:10.1016/j.foodcont.2014.11.012]
10. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environment Res Pub Health. 2014;11(5):4745-67. [DOI:10.3390/ijerph110504745]
11. Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell MdlÁ, Urdaci MC. Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase Faecalibacterium prausnitzii abundance. Front Immunol. 2017;8:88. [DOI:10.3389/fimmu.2017.00088]
12. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control. 2014;37:251-6. [DOI:10.1016/j.foodcont.2013.09.055]
13. Wu N, Lin J, Wu L, Zhao J. Distribution of Candida albicans in the oral cavity of children aged 3-5 years of Uygur and Han nationality and their genotype in caries-active groups. Genet Mol Res. 2015;14(1):748-57. [DOI:10.4238/2015.January.30.18]
14. Ghasempour M, Omran SM, Moghadamnia AA, Shafiee F. Effect of aqueous and ethanolic extracts of Lippia citriodora on candida albicans. Electron Physician. 2016;8(8):2752-8. [DOI:10.19082/2752]
15. Humphries RM, Ambler J, Mitchell SL, et al. CLSI Methods Development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. 2018;56(4). [DOI:10.1128/JCM.01934-17]
16. Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol. 2009;47(7):681-9. [DOI:10.3109/13693780802549594]
17. Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x]
18. Tahmourespour A, Kermanshahi RK. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci. Bosnian J Basic Med Sci. 2011;11(1):37. [DOI:10.17305/bjbms.2011.2621]
19. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods. 2000;40(2):175-9. [DOI:10.1016/S0167-7012(00)00122-6]
20. Odds F. Candida and candidiosis: a review and bibliography bailliere tindall. London, UK. 1988.
21. Mehrabani Natanzi M, Emampour M, Mirzaei A, Kalantar E, Khodaii Z. Protective Activity of Probiotic Bacteria Against Candida albicans: An In Vitro Study. Int J Enteric Pathog. 2018;6(4):113-7. [DOI:10.15171/ijep.2018.28]
22. Jiang Q, Stamatova I, Kari K, Meurman J. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions. Benef Microbes. 2014;6(3):361-8. [DOI:10.3920/BM2014.0054]
23. Ishikawa KH, Mayer MP, Miyazima TY, et al. A multispecies probiotic reduces oral Candida colonization in denture wearers. J Prosthodontics. 2015;24(3):194-9. [DOI:10.1111/jopr.12198]
24. Hasslöf P, Hedberg M, Twetman S, Stecksén-Blicks C. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli-an in vitro study. BMC Oral Health. 2010;10(1):18. [DOI:10.1186/1472-6831-10-18]
25. Matsubara V, Wang Y, Bandara H, Mayer M. Samaranayake, LP (2016). Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Apply Microbiol Biotechnol. 100 (14): 6415-26. [DOI:10.1007/s00253-016-7527-3]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb