Volume 29, Issue 135 (July & August 2021)                   J Adv Med Biomed Res 2021, 29(135): 197-205 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zangouie N, Akhiani O, Ravaei H, Beladian-Behbahan S, Javdan G. Nano-Seleniumoxide nanoparticles affect lipid peroxidation and tissue total antioxidant capacity (TAC) in skin injury. J Adv Med Biomed Res 2021; 29 (135) :197-205
URL: http://journal.zums.ac.ir/article-1-6061-en.html
1- Pharmaceutical Sciences Branch, Tehran Islamic Azad University, Tehran, Iran
2- Dept. of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
3- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
4- Dept. of Health and Social Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
5- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran , Javdan.gholamali@gmail.com
Abstract:   (136373 Views)

Background and Objective: Skin flaps in the distal region lose their tissue because of impaired perfusion, which is strongly due to the ischemia-reperfusion injury (IRI) and oxidative stress (OS). Reducing reactive oxygen species (ROS) and increasing antioxidant capacity are the most important approaches to preserve flaps. Given the antioxidant effects of selenium, it is expected to be effective in enhancing flap survival.
Materials and Methods: In this survey, 30 rats were divided into 3 groups of 10: 1) sham group (incision of the flap margin without elevation of the bed), 2) flap surgery group (incision and elevation of the skin from bed+plastic film placement under the flap), and 3) flap surgery+nano-selenium oxide treatment (incision and elevation of the skin from bed+plastic film placement under the flap+nano-selenium oxide 25 mg/kg intraperitoneally).
On the seventh day after flap surgery, the flap necrosis percentage, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity were measured.
Results: Flap necrosis and the level of MDA significantly increased in the flap surgery group and decreased in the nano-selenium oxide-treated group (P<0.05). SOD activity decreased in the flap surgery group and increased in the nano-selenium oxide-treated group (P<0.05).
Conclusion: The results of this study showed that treatment with nano-selenium oxide reduced flap tissue necrosis and lipid peroxidation significantly; it also increased SOD activity. Therefore, the survival of the flap and its efficacy increased.

Full-Text [PDF 589 kb]   (142009 Downloads) |   |   Full-Text (HTML)  (3145 Views)  

The results of this study showed that treatment with nano-selenium oxide reduced flap tissue necrosis and lipid peroxidation significantly; it also increased SOD activity. Therefore, the survival of the flap and its efficacy increased.


Type of Study: Original Research Article | Subject: Medical Biology
Received: 2020/06/13 | Accepted: 2021/02/9 | Published: 2021/02/28

References
1. Banimohammad M, Ravaei H, Khalafi P, Javdan G, Ayatollahi SA, Davoodi SH. Change in total anti-oxidant capacity (TAC) of tissue, a new method for improving dermal wound healing. Kurdistan Sci Med J.2019; 24(3):96-109. [DOI:10.29252/sjku.24.3.96]
2. Bagdas D, Cam Etoz B, Inan Ozturkoglu S, et al. Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharmaceut Bulletin. 2014; 37(3):361-70. [DOI:10.1248/bpb.b13-00635]
3. Banimohammad M, Farrokhi M, Varshoei B, Ayatollahi SA. Effects of saffron oral gavage on protection of skin flaps against tissue necrosis and oxidative stress in rats. Koomesh 2019; 21(2):347-53.
4. Razaz JM, Ebadi Fard Fzar Aa, Naziri M, Banimohammad M, Majdi Seghinsara A, Javdan G. Effects of oral gavage treatment of Eupatilin on protection of skin flaps in rats. Koomesh 2019; 21(2):318-23.
5. Ince B, Bilgen F, Gundeslioglu AO, Dadaci M, Kozacioglu S. Use of systemic rosmarinus officinalis to enhance the survival of random-pattern skin flaps. Balkan Med J 2016; 33(6):645-51. [DOI:10.5152/balkanmedj.2016.150981]
6. Banimohammad M, Javdan G, Samavat Ekbatan S, Safe M, Hajheydari Z. Protective effect of oral extract of stevia rebaudiana on skin flap survival in male rats. J Mazandaran Univ Med Sci 2018; 28(166):1-9.
7. Trkvist L, Lfberg R, Raud J, Thorlacius H. Heparin protects against skin flap necrosis: Relationship to neutrophil recruitment and anti-coagulant activity. Inflam Res. 2004; 53(1):1-3. [DOI:10.1007/s00011-003-1218-0]
8. Ayatollahi SA, Ajami M, Reyhanfard H, et al. BCL-2 and Bax expression in skin flaps treated with finasteride or azelaic acid. Iran J Pharm Res 2012; 11(4):1285-90.
9. Pazoki-Toroudi HR, Hesami A, Vahidi S, Sahebjam F, Seifi B, Djahanguiri B. The preventive effect of captopril or enalapril on reperfusion injury of the kidney of rats is independent of angiotensin II AT1 receptors. Fundam Clin Pharmacol 2003; 17(5):595-8. [DOI:10.1046/j.1472-8206.2003.00188.x]
10. Hasanvand A, Abbaszadeh A, Darabi S, Nazari A, Gholami M, Kharazmkia A. Evaluation of selenium on kidney function following ischemic injury in rats; protective effects and antioxidant activity. J Renal Inj Prev 2017; 6(2):93-8. [DOI:10.15171/jrip.2017.18]
11. Ajami M, Eghtesadi S, Razaz JM, et al. Expression of Bcl-2 and Bax after hippocampal ischemia in DHA + EPA treated rats. Neurol Sci 2011; 32(5):811-8. [DOI:10.1007/s10072-011-0621-5]
12. Akil M, Bicer M, Menevse E, Baltaci AK, Mogulkoc R. Selenium supplementation prevents lipid peroxidation caused by arduous exercise in rat brain tissue. Bratisl Lek Listy 2011; 112(6):314-7.
13. Pazoki Toroudi MRA. Potassium channel modulators and indomethacin-induced gastric ulceration in rats. Scand J Gastroenterol 2009; 34(10):962-6. [DOI:10.1080/003655299750025048]
14. Zarch AV, Toroudi HP, Soleimani M, Bakhtiarian A, Katebi M, Djahanguiri B. Neuroprotective effects of diazoxide and its antagonism by Glibenclamide in pyramidal neurons of rat hippocampus subjected to ischemia-reperfusion-induced injury. Int J Neurosci. 2009; 119(9):1346-61. [DOI:10.1080/00207450802338721]
15. Ehrampoush E, Homayounfar R, Davoodi SH, Zand H, Askari A, Kouhpayeh SA. Ability of dairy fat in inducing metabolic syndrome in rats. Springerplus 2016; 5(1):2020. [DOI:10.1186/s40064-016-3716-x]
16. Vahid F, Hatami M, Sadeghi M, Ameri F, Faghfoori Z, Davoodi SH. The association between the index of nutritional quality (INQ) and breast cancer and the evaluation of nutrient intake of breast cancer patients: A case-control study. Nutrition 2018; 45:11-6. [DOI:10.1016/j.nut.2017.06.011]
17. Vahid F, Shivappa N, Hatami M, et al. Association between dietary inflammatory index (DII) and risk of breast cancer: a case-control study. Asian Pac J Cancer Prev 2018; 19(5):1215-21.
18. Maiyo F, Singh M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine (Lond) 2017; 12(9):1075-89. [DOI:10.2217/nnm-2017-0024]
19. Pazoki-Toroudi H, Nassiri-Kashani M, Tabatabaie H, et al. Combination of azelaic acid 5% and erythromycin 2% in the treatment of acne vulgaris. J Dermatol Treat. 2010; 21(3):212-6. [DOI:10.3109/09546630903440064]
20. Sonkusre P. Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol. 2014; 05(02). [DOI:10.4172/2157-7439.1000194]
21. Rahgozar M, Pazokitoroudi H, Bakhtiarian A, Djahanguiri B. Diazoxide, a K ATP opener, accelerates restitution of ethanol or indomethacin‐induced gastric ulceration in rats independent of polyamines. J Gastroenterol Hepatol. 2001; 16(3):290-6. [DOI:10.1046/j.1440-1746.2001.02433.x]
22. Habibey R, Ajami M, Ebrahimi SA, Hesami A, Babakoohi S, Pazoki-Toroudi H. Nitric oxide and renal protection in morphine-dependent rats. Free Radical Biol Med. 2010; 49(6):1109-18. [DOI:10.1016/j.freeradbiomed.2010.06.024]
23. Firooz A, Khatami A, Khamesipour A, et al. Intralesional injection of 2% zinc sulfate solution in the treatment of acute old world cutaneous leishmaniasis: a randomized, double-blind, controlled clinical trial. J Drugs Dermatol 2005; 4(1):73-9.
24. Pazoki-Toroudi HR, Ajami M, Habibey R. Pre-medication and renal pre-conditioning: A role for alprazolam, atropine, morphine and promethazine. Fundam Clin Pharmacol. 2010;24(2):189-98 [DOI:10.1111/j.1472-8206.2009.00743.x]
25. Kumar S, Tomar MS, Acharya A. Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton's lymphoma cells. Colloids Surf B: Biointerfaces 2015; 126:546-52. [DOI:10.1016/j.colsurfb.2015.01.009]
26. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008; 101(1):22-31. [DOI:10.1093/toxsci/kfm221]
27. Dwivedi C, Shah CP, Singh K, Kumar M, Bajaj PN. An organic acid-induced synthesis and characterization of selenium nanoparticles. J Nanotechnol. 2011; 2011(2):1-6. [DOI:10.1155/2011/651971]
28. Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017; 33:83-90. [DOI:10.1016/j.nut.2016.05.001]
29. Mc Farlane RM, Deyoung G, Henry RA. The design of a pedicle flap in the rat to study necrosis and its prevention. Plastic Reconstruct Surg. 1965; 35(2):177-82. [DOI:10.1097/00006534-196502000-00007]
30. Masukawa T. Pharmacological and toxicological aspects of inorganic and organic selenium compounds. In: Patai S, editor. Organic Selenium and Tellurium Compounds Vol. 2 (1987). Chichester, UK: John Wiley & Sons, Inc; 1987. p. 377-92. [DOI:10.1002/9780470771785.ch9]
31. Aribi M, Meziane W, Habi S, et al. Macrophage bactericidal activities against staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner. PLoS ONE 2015; 10(9):e0135515. [DOI:10.1371/journal.pone.0135515]
32. Chhabria S, Desai K. Selenium nanoparticles and their applications. Encyclopedia of Nanoscience and Nanotechnology 2016:1-32.
33. Kiafar E, Nasrabadi HT, Abedelahi A, Shoorei H, Seghinsara AM. Protective effects of vitamin E and selenium on liver tissue damages induced by electromagnetic field: an ultrastructural study. Cres J Med Biol Sci. 2018; 5(4):338-44.
34. Wang Y, Wang J, Hao H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano. 2016; 10(11):9927-37. [DOI:10.1021/acsnano.6b03835]
35. Dehkordi AJ, Mohebbi AN, Aslani, Ghoreyshi SM. Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Hum Exp Toxicol.2016; 36(4):421-7. [DOI:10.1177/0960327116651124]
36. Varoglu E, Seven B, Gumustekin K, Aktas O, Sahin A, Dane S. The effects of vitamin E and selenium on blood flow to experimental skin burns in rats using the 133Xe clearance technique. Open Med. 2010; 5(2):1133. [DOI:10.2478/s11536-009-0081-y]
37. Shanu A, Groebler L, Kim HB, et al. Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal. 2013; 18(7):756-69. [DOI:10.1089/ars.2012.4591]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb