Volume 29, Issue 132 (January & February 2021)                   J Adv Med Biomed Res 2021, 29(132): 34-40 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashkani-Esfahani S, Ebrahimi A, Bahmani-Jahromi M, Nadimi E, Arabzadeh H, Jalalpour M H, et al . The Effect of Melissa officinalis Extract on Streptozotocin-Induced Diabetes in Rats: A Stereological Study on Pancreatic Islets and Beta-cells. J Adv Med Biomed Res 2021; 29 (132) :34-40
URL: http://journal.zums.ac.ir/article-1-6071-en.html
1- Dept. of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
2- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
3- Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
4- Dept. of Medical Ethics, Shiraz University of Medical Sciences, Shiraz, Iran , Sedighebrahimi@gmail.com
Abstract:   (146950 Views)

 Background & Objective:  Melissa officinalis (MO) was shown to possess antioxidant and anti-inflammatory properties and is traditionally believed to have anti-hyperglycemic effects. This study aims to evaluate the protective effects of MO on streptozotocin (STZ) induced pancreatic damage and thereupon diabetes in rats.
 Materials & Methods:  To induce diabetes mellitus (DM) in rats, STZ (60 mg/kg) was injected intraperitoneally. Forty eight rats were randomly divided into four groups: control 1 (C1) consisted of healthy rats, control 2 (C2) consisted of non-treated diabetic rats, and treatment groups 1 and 2 (T1, T2) were the diabetics orally treated with 150 and 300 mg/kg MO for 14 days, respectively. After euthanizing the animals, their pancreases were extracted and sent for stereological evaluations. Volume density (Vv; %), the absolute volume of the islets (mm3), numerical density of beta cells (Nv; per mm3), and their total number (×106), were measured. P-value<0.05 was considered as statistically significant.
 Results:  The treatment groups showed significant improvements in volume density and total volume of the islets as well as the numerical density and the total number of the beta cells (P<0.001). The treatment groups also had significantly lower blood sugar compared to the untreated group (P=0.008).
 Conclusion:  According to our results, MO has shown promising effects on the pancreatic beta cells against toxic chemicals such as STZ. However, further studies are needed to examine the beneficial effects and possible adverse effects of MO in laboratory models and also in humans.

Full-Text [PDF 576 kb]   (155277 Downloads) |   |   Full-Text (HTML)  (2988 Views)  

✅ According to our results, MO has shown promising effects on the pancreatic beta cells against toxic chemicals such as STZ. However, further studies are needed to examine the beneficial effects and possible adverse effects of MO in laboratory models and also in humans.


Type of Study: Original Research Article | Subject: Clinical Medicine
Received: 2020/06/16 | Accepted: 2020/08/12 | Published: 2020/11/14

References
1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53. [DOI:10.2337/diacare.27.5.1047]
2. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19(3):257-67. [DOI:10.2337/diacare.19.3.257]
3. Montonen J, Knekt P, Järvinen R, Reunanen A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care. 2004;27(2):362. [DOI:10.2337/diacare.27.2.362]
4. Bastaki A. Diabetes mellitus and its treatment. Int J Diabet Metab. 2005;13(3):111. [DOI:10.1159/000497580]
5. Dey L, Attele AS, Yuan C-S. Alternative therapies for type 2 diabetes. Alternat Med Rev. 2002;7(1):45-58.
6. Knekt P, Reunanen A, Marniemi J, Leino A, Aromaa A. Low vitamin E status is a potential risk factor for insulin‐dependent diabetes mellitus. J Inter Med. 1999;245(1):99-102. [DOI:10.1046/j.1365-2796.1999.00416.x]
7. Abahusain M, Wright J, Dickerson J, De Vol E. Retinol, α-tocopherol and carotenoids in diabetes. Europ J Clin Nutri. 1999;53(8):630. [DOI:10.1038/sj.ejcn.1600825]
8. Polidori M, Mecocci P, Stahl W, et al. Plasma levels of lipophilic antioxidants in very old patients with type 2 diabetes. Diabet Metab Res Rev. 2000;16(1):15-9. https://doi.org/10.1002/(SICI)1520-7560(200001/02)16:1<15::AID-DMRR71>3.0.CO;2-B [DOI:10.1002/(SICI)1520-7560(200001/02)16:13.0.CO;2-B]
9. Ford ES, Mokdad AH. Fruit and vegetable consumption and diabetes mellitus incidence among US adults. Prevent Med. 2001;32(1):33-9. [DOI:10.1006/pmed.2000.0772]
10. Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553-64. [DOI:10.2337/diacare.12.8.553]
11. Moacă EA, Farcaş C, Ghiţu A, et al. A Comparative Study of Melissa officinalis Leaves and Stems Ethanolic Extracts in terms of Antioxidant, Cytotoxic, and Antiproliferative Potential. Evid Based Complement Alternat Med. 2018;2018:7860456. [DOI:10.1155/2018/7860456]
12. Basar SN, Zaman R. An overview of badranjboya (Melissa officinalis). Int Res J Biol Sci. 2013;2(12):107-9.
13. Sadraei H, Ghannadi A, Malekshahi K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia. 2003;74(5):445-52. [DOI:10.1016/S0367-326X(03)00109-6]
14. Miraj S, Rafieian K, Kiani S. Melissa officinalis L: A Review study with an antioxidant prospective. J Evid Based Complement Alternat Med. 2016;22(3):385-94. [DOI:10.1177/2156587216663433]
15. Hasanein P, Riahi H. Antinociceptive and antihyperglycemic effects of Melissa officinalis essential oil in an experimental model of diabetes. Med Principles Practice. 2015;24(1):47-52. [DOI:10.1159/000368755]
16. Chung MJ, Cho S-Y, Bhuiyan MJH, Kim KH, Lee S-J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br J Nutr. 2010;104(2):180-8. [DOI:10.1017/S0007114510001765]
17. Herodež ŠS, Hadolin M, Škerget M, Knez Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem. 2003;80(2):275-82. [DOI:10.1016/S0308-8146(02)00382-5]
18. Noorafshan A, Ebrahimi S, Esmaeilzadeh E, Arabzadeh H, Bahmani-Jahromi M, Ashkani-Esfahani S. Effects of Arnebia Euchroma extract on streptozotocin induced diabetes in rats: A stereological study. Acta Endocrinologica (Bucharest). 2017;13(3):272. [DOI:10.4183/aeb.2017.272]
19. Noorafshan A, Hoseini L, Karbalay-Doust S, Nadimi E. A simple stereological method for estimating the number and the volume of the pancreatic beta cells. JOP J Pancreas. 2012;13(4):427-32.
20. Gundersen H, Bagger P, Bendtsen T, et al. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmis. 1988;96(7‐12):857-81. [DOI:10.1111/j.1699-0463.1988.tb00954.x]
21. Baharvand-Ahmadi B, Bahmani M, Tajeddini P, Naghdi N, Rafieian-Kopaei M. An ethno-medicinal study of medicinal plants used for the treatment of diabetes. J Nephropathol. 2016;5(1):44-50. [DOI:10.15171/jnp.2016.08]
22. Gordon JS. Alternative medicine and the family physician. Am Family Physician. 1996;54(7):2205-12, 18-20.
23. Shin Y, Lee D, Ahn J, Lee M, Shin SS, Yoon M. The herbal extract ALS-L1023 from Melissa officinalis reduces weight gain, elevated glucose levels and β-cell loss in Otsuka Long-Evans Tokushima fatty rats. J Ethnopharmacol. 2020;113360. Epub ahead of print. [DOI:10.1016/j.jep.2020.113360]
24. Weidner C, Wowro SJ, Freiwald A, et al. Lemon balm extract causes potent antihyperglycemic and antihyperlipidemic effects in insulin-resistant obese mice. Mol Nutr Food Res . 2014;58(4):903-7 [DOI:10.1002/mnfr.201300477]
25. Zeraatpishe A, Oryan S, Bagheri MH, et al. Effects of Melissa officinalis L. on oxidative status and DNA damage in subjects exposed to long-term low-dose ionizing radiation. Toxicol Ind Health. 2011;27(3):205-12. [DOI:10.1177/0748233710383889]
26. Martins EN, Pessano NT, Leal L, et al. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res Bull .2012;87(1):74-9. [DOI:10.1016/j.brainresbull.2011.10.003]
27. Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2016;188:204-28. [DOI:10.1016/j.jep.2016.05.010]
28. Yen HF, Hsieh CT, Hsieh TJ, Chang FR, Wang CK. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. J Food Drug Analysis. 2015;23(1):124-9. [DOI:10.1016/j.jfda.2014.02.004]
29. Asadi A, Shidfar F, Safari M, et al. Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A randomized, double-blind, clinical trial. Phytother Res. 2019;33(3):651-9. [DOI:10.1002/ptr.6254]
30. Neda N, Alireza E, Alipasha M, et al. The effects of a Melissa officinalis L. based product on metabolic parameters in patients with type 2 diabetes mellitus: A randomized double-blinded controlled clinical trial. J Complement Integ Med. 2019;16(3):20180088. [DOI:10.1515/jcim-2018-0088]
31. Asadi A, Shidfar F, Safari M, et al. Safety and efficacy of Melissa officinalis (lemon balm) on ApoA-I, Apo B, lipid ratio and ICAM-1 in type 2 diabetes patients: A randomized, double-blinded clinical trial. Complement Ther Med. 2018;40:83-8. [DOI:10.1016/j.ctim.2018.07.015]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb