Volume 28, Issue 130 (September & October 2020)                   J Adv Med Biomed Res 2020, 28(130): 253-264 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Danesh F, GhaviDel S, Piranfar V. Coronavirus: Discover the Structure of Global Knowledge, Hidden Patterns & Emerging Events. J Adv Med Biomed Res 2020; 28 (130) :253-264
URL: http://journal.zums.ac.ir/article-1-6166-en.html
1- Information Management Research Department, Regional Information Center for Science and Technology (RICeST), Shiraz, Iran , farshiddanesh@ricest.ac.ir
2- Department of Knowledge and Information Science, Kharazmi University, Tehran, Iran
3- Research and Development Department, Farname Inc, Thornhill, Canada
Abstract:   (150531 Views)
Background & Objective:  The present study aimed at exploring the structure of global knowledge, hidden patterns, and emerging Coronavirus events using co-word techniques. Co-word analysis is one of the most efficient scientific methods to analyze the structure and dynamics of knowledge and the general state of research.
 Materials & Methods:  This applied research performed using Co-word analysis. The statistical population is 4102 keywords from Web of Science Core Collection indexed documents on Coronavirus retrieved through advanced search (1970-2019). To identify the keywords used to design a search strategy, the Medical Subject Heading browser was utilized. After the keyword editing process, the threshold identified, and UCINET, VOSviewe, and SPSS 16 were used to analyze the data.
Results:  The highest frequent keyword was "Severe Acute Respiratory Syndrome (SARS)" with a frequency of 276. Nineteen subject clusters were the result of a hierarchical clustering analysis by the Wards' method. Clusters 4 and 15 were the biggest ones with nine keywords. Strategic diagram analysis showed that the most prominent Coronavirus clusters' most prominent clusters are in Quadrant III of the strategic diagram.
Conclusion:  The results showed that Coronavirus research's intellectual structure in the form of 19-topic thematic clusters and determining the degree of cluster cohesion makes it possible to discover complex conceptual relationships of valid international Coronavirus research. The results of this paper could also be used to guide medical researchers, especially coronavirus scientists. Medical policymakers can also more effectively present strategic plans by becoming aware of the global knowledge structure, hidden patterns, and emerging international coronavirus events.
Full-Text [PDF 842 kb]   (157504 Downloads) |   |   Full-Text (HTML)  (8680 Views)  
Type of Study: Original Article | Subject: Medical Biology
Received: 2020/07/12 | Accepted: 2020/09/5 | Published: 2020/09/30

References
1. Jalali Nadoushan M, Ahmadi S, Jalali Nadoushan P. Serology Testing for SARS-CoV-2: Benefits and Challenges. Iranian Journal of Pathology. 2020;15(3):154-5. [DOI:10.30699/ijp.2020.39841] [PMID] [PMCID]
2. Wen J, Aston J, Liu X, Ying T. Effects of misleading media coverage on public health crisis: a case of the 2019 novel coronavirus outbreak in China. Anatolia. 2020;31(2):331-6. [DOI:10.1080/13032917.2020.1730621]
3. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents. 2020;55(3):105924. [DOI:10.1016/j.ijantimicag.2020.105924] [PMID] [PMCID]
4. Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki S-i, Ishihara T, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. New England Journal of Medicine. 2020. [DOI:10.1056/NEJMc2013020] [PMID] [PMCID]
5. Zhu Z, Zhang Z, Chen W, Cai Z, Ge X, Zhu H, et al. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infect Genet Evol. 2018;61:183-4. [DOI:10.1016/j.meegid.2018.03.028] [PMID] [PMCID]
6. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. [DOI:10.1007/978-1-4939-2438-7_1] [PMID] [PMCID]
7. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. [DOI:10.1016/j.meegid.2020.104212] [PMID] [PMCID]
8. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2019;17(3):181-92. [DOI:10.1038/s41579-018-0118-9] [PMID] [PMCID]
9. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. [DOI:10.1016/j.meegid.2020.104211] [PMID] [PMCID]
10. CSSE J. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2020.
11. Birkle C, Pendlebury DA, Schnell J, Adams J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies. 2020;1(1):363-76. [DOI:10.1162/qss_a_00018]
12. Niloofar P, Hassan H, Gholamreza A, Mohammadhadi A, Ghasem J, Reza M, et al. Scientometric Study on Non-communicable Diseases in Iran: A Review Article. Iranian Journal of Public Health. 2018;47(7).
13. Liu G-Y, Hu J-M, Wang H-L. A co-word analysis of digital library field in China. Scientometrics. 2012;91(1):203-17. [DOI:10.1007/s11192-011-0586-4]
14. Chen X, Chen J, Wu D, Xie Y, Li J. Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded Project. Procedia Computer Science. 2016;91:547-55. [DOI:10.1016/j.procs.2016.07.140]
15. Lee P-C, Su H-N. Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation. 2010;12(1):26-40. [DOI:10.5172/impp.12.1.26]
16. Ravikumar S, Agrahari A, Singh SN. Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005-2010). Scientometrics. 2015;102(1):929-55. [DOI:10.1007/s11192-014-1402-8]
17. Danesh F, Ghavidel S. Coronavirus: Scientometrics of 50 Years of Global Scientific Productions. Iran J Med Microbiol. 2020;14(1):1-16. [DOI:10.30699/ijmm.14.1.1]
18. Bonilla-Aldana DK, Quintero-Rada K, Montoya-Posada JP, Ramirez-Ocampo S, Paniz-Mondolfi A, Rabaan AA, et al. SARS-CoV, MERS-CoV and now the 2019-novel CoV: Have we investigated enough about coronaviruses? - A bibliometric analysis. Travel Med Infect Dis. 2020;33:101566. [DOI:10.1016/j.tmaid.2020.101566] [PMID] [PMCID]
19. Danesh F, Ghavidel S. Visualizing the Clusters and Dynamics of HPV Research Area. Iranian Journal of Medical Microbiology. 2019;13(4):266-78. [DOI:10.30699/ijmm.13.4.266]
20. Singh N, Brar R, Chavan SB, Singh J. Scientometric analyses and visualization of a scientific outcome on the Nipah virus. CURRENT SCIENCE (A Fortnightly Journal of Research). 2019;117(10):1574-84. [DOI:10.18520/cs/v117/i10/1574-1584]
21. Zyoud SH. Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infect Dis. 2016;16:255. [DOI:10.1186/s12879-016-1600-5] [PMID] [PMCID]
22. Chiu WT, Huang JS, Ho YS. Bibliometric analysis of Severe Acute Respiratory Syndrome-related research in the beginning stage. Scientometrics. 2004;61(1):69-77. [DOI:10.1023/B:SCIE.0000037363.49623.28] [PMID] [PMCID]
23. Ekundayo TC, Okoh AI. A global bibliometric analysis of Plesiomonas-related research (1990 - 2017). PLoS One. 2018;13(11):e0207655. [DOI:10.1371/journal.pone.0207655] [PMID] [PMCID]
24. Khazaneha M, Heaidary G, Mostafavi I. Structural analyzing of Information Science Theories based on co-word network analysis of articles in Web of Science database (1983-2017). Iranian Journal of Processing and Management. 2019;34(3):1051-76.
25. Ahmadi H, Osareh F. Co-word analysis concept, definition and application. 2017.
26. Analytics C. Web of science platform: Web of science: Summary of coverage. 2018.
27. Hu C-P, Hu J-M, Deng S-L, Liu Y. A co-word analysis of library and information science in China. Scientometrics. 2013;97(2):369-82. [DOI:10.1007/s11192-013-1076-7]
28. Lee B, Jeong Y-I. Mapping Korea's national R&D domain of robot technology by using the co-word analysis. Scientometrics. 2008;77(1):3-19. [DOI:10.1007/s11192-007-1819-4]
29. Neff MW, Corley EA. 35 years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics. 2009;80(3):657-82. [DOI:10.1007/s11192-008-2099-3]
30. Ding Y, Chowdhury GG, Foo S. Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing & Management. 2001;37(6):817-42. [DOI:10.1016/S0306-4573(00)00051-0]
31. Zong Q-J, Shen H-Z, Yuan Q-J, Hu X-W, Hou Z-P, Deng S-G. Doctoral dissertations of Library and Information Science in China: A co-word analysis. Scientometrics. 2013;94(2):781-99. [DOI:10.1007/s11192-012-0799-1]
32. Melcer E, Nguyen T-HD, Chen Z, Canossa A, El-Nasr MS, Isbister K. Games research today: Analyzing the academic landscape 2000-2014. network. 2015;17:20.
33. Law J, Bauin S, Courtial JP, Whittaker J. Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics. 1988;14(3):251-64. [DOI:10.1007/BF02020078]
34. Sohaili F, Shaban A, Khase A. Intellectual structure of knowledge in information behavior: A co-word analysis. Human Information Interaction. 2016;2(4):21-36.
35. Giannakos M, Papamitsiou Z, Markopoulos P, Read J, Hourcade JP. Mapping child-computer interaction research through co-word analysis. International Journal of Child-Computer Interaction. 2020;23-24:100165. [DOI:10.1016/j.ijcci.2020.100165]
36. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1). [DOI:10.3390/v11010059] [PMID] [PMCID]
37. Al-Tawfiq JA, Gautret P. Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: Extent and implications for infection control: A systematic review. Travel Med Infect Dis. 2019;27:27-32. [DOI:10.1016/j.tmaid.2018.12.003] [PMID] [PMCID]
38. Momattin H, Al-Ali AY, Al-Tawfiq JA. A Systematic Review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Travel Med Infect Dis. 2019;30:9-18. [DOI:10.1016/j.tmaid.2019.06.012] [PMID] [PMCID]
39. Leist SR, Jensen KL, Baric RS, Sheahan TP. Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis. PLoS One. 2019;14(7):e0220126. [DOI:10.1371/journal.pone.0220126] [PMID] [PMCID]
40. Abdollahi A, Mahmoudi-aliabadi M, Mehrtash V, Jafarzadeh B, Salehi M. The Novel Coronavirus SARS-CoV-2 Vulnerability Association with ABO/Rh Blood Types. Iranian Journal of Pathology. 2020;15(3):156-60. [DOI:10.30699/ijp.2020.125135.2367] [PMID] [PMCID]
41. Danesh F, Ghavidel S. Coronavirus: Scientometrics of 50 Years of Global Scientific Productions. Iranian Journal of Medical Microbiology. 2020;14(1):1-16. [DOI:10.30699/ijmm.14.1.1]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb