Volume 32, Issue 150 (January & February 2024)                   J Adv Med Biomed Res 2024, 32(150): 41-47 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahzade Fard A, Chodari L, Alizade T, Madatli F, Ahmadian E, Mahmoodpoor F. Selenium Pretreatment Protects Against Renal Ischemia Reperfusion Injury by Inducing Mitochondrial Biogenesis. J Adv Med Biomed Res 2024; 32 (150) :41-47
URL: http://journal.zums.ac.ir/article-1-7230-en.html
1- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
2- Dept. of Physiology, School of medicine, Urmia University of Medical Sciences, Urmia, Iran
3- Dept. of Pharmaceutical Technology and Management, Faculty of Pharmacy, Azerbaijan Medical University, Baku, Azerbaijan
4- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
5- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran , ahmadian.elham@yahoo.com
6- Research Center For Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:   (214 Views)

Background & Objective: Acute kidney injury (AKI) is a rapid loss of kidney function that is associated with high morbidity and mortality. Oxidative hazard, inflammation, mitochondrial deterioration and depletion of cellular energy stores, which terminate in organ dysfunction, are the major hallmarks of AKI. The current experimental investigation attempted to evaluate the effects of selenium (Se), a pivotal micronutrient, on the ischemia/reperfusion (IR)-induced kidney damage emphasizing on the biogenesis of mitochondria.
Materials & Methods: Male Wistar rats (n = 18) were randomly allocated into three groups: sham, IR, and Se + IR. Rats in the last group 1 h before IR induction, were treated with Se (0.5 mg/kg) intraperitoneally. Six hours after reperfusion blood and kidney tissue samples were collected, and animals were euthanized. In addition to the evaluation of biochemical factors and histopathology, the protein levels of sirtuin1 (SIRT-1), and peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α) of the kidney tissues were determined via western blotting.
Results: Pre-treatment with Se could significantly improve IR-induced kidney function markers (creatinine and BUN) as well as the pathological alteration in comparison with the IR group (P < 0.05). Moreover, in the Se + IR group, a substantial surge of the Sirt-1 and PGC-1α at the protein level was recorded compared to the IR group.
Conclusion: The results proposed that Se displays a protective role against renal IR injury via up-regulating proteins involved in mitochondrial biogenesis. Due to the pivotal role of mitochondria in renal tubules, these results offer insight into the plausible preventative and/or therapeutic effects of Se against AKI after further studies.

Full-Text [PDF 484 kb]   (73 Downloads)    
Type of Study: Original Article | Subject: Medical Biology
Received: 2023/04/17 | Accepted: 2023/12/2 | Published: 2024/01/30

References
1. Zhou M, Tang W, Fu Y, et al, Progranulin protects against renal ischemia/reperfusion injury in mice. Kidney Int. 2015; 87(5): 918-29. [DOI:10.1038/ki.2014.403] [PMID]
2. Hosszu A, Antal Z, Lenart L, et al. σ1-receptor agonism protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2017. 28(1): 152-65. [DOI:10.1681/ASN.2015070772] [PMID] []
3. Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract. 2019; 38(4): 427. [DOI:10.23876/j.krcp.19.062] [PMID] []
4. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nature Rev Nephrol. 2011. 7(4): 189-200. [DOI:10.1038/nrneph.2011.16] [PMID]
5. Ralto KM, Parikh SM.. Mitochondria in acute kidney injury. Semin Nephrol. 2016;36(1):8-16 [DOI:10.1016/j.semnephrol.2016.01.005] [PMID] []
6. Tran M, Parikh SM. Mitochondrial biogenesis in the acutely injured kidney. Nephron Clin Pract. 2014. 127(1-4): 42-45. [DOI:10.1159/000363715] [PMID]
7. Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigen. 2016. 8:1-21. [DOI:10.1186/s13148-016-0224-3] [PMID] []
8. Kong L, Wu H, Zhou W, et al. Sirtuin 1: a target for kidney diseases. Molec Med. 2015. 21: 87-97. [DOI:10.2119/molmed.2014.00211] [PMID] []
9. Chatterjee PK., Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn-Schmiedeberg's Arch Pharmacol. 2007. 376 (1-2): 1-43. [DOI:10.1007/s00210-007-0183-5] [PMID]
10. Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Injury Prevent.2015; 4(2): 20.
11. Kezic A, Spasojevic I, Lezaic V, Bajcetic M. Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Longev. 2016. 2016. PMC4894993. [DOI:10.1155/2016/2950503] [PMID] []
12. Ala M, Khoshdel M, Dehpour AR. Empagliflozin enhances autophagy, mitochondrial biogenesis, and antioxidant defense and ameliorates renal ischemia/reperfusion in nondiabetic rats. Oxid Med Cell Longev.2022; 2022:1197061 [DOI:10.1155/2022/1197061] [PMID] []
13. Granata S,Votrico V, Spadaccino F, et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: Focus on ferroptosis, mitophagy and new antioxidants. Antioxidants, 2022. 11(4): 769. [DOI:10.3390/antiox11040769] [PMID] []
14. Kieliszek M, Bano I, Zare H.A comprehensive review on selenium and its effects on human health and distribution in middle eastern countries. Biol Trace Element Res. 2022. 200(3): 971-87. [DOI:10.1007/s12011-021-02716-z] [PMID] []
15. Barchielli G, Capperucci A,Tanini D. The role of selenium in pathologies: An updated review. Antioxidants, 2022. 11(2): 251. [DOI:10.3390/antiox11020251] [PMID] []
16. Golin A., Tinkov A, Aschner M, Farina M, da Rocha T. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: a critical review. J Trace Element Med Biol. 2022:127099. [DOI:10.1016/j.jtemb.2022.127099] [PMID] []
17. Zachara B. Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv Clin Chem. 2015. 68:131-51. [DOI:10.1016/bs.acc.2014.11.006] [PMID]
18. Fu S, Zhang L, Ma F, et al. Effects of selenium on chronic kidney disease: A mendelian randomization study. Nutrients, 2022. 14(21): 4458. [DOI:10.3390/nu14214458] [PMID] []
19. Ahmadi K, Roshan-Milani S, Asgharzadeh F, Pourjabali M, Fard AA. In vitro and in vivo pretreatment with selenium mitigates tetrahydrocannabinol-induced testicular cell apoptosis: the role of AKT and p53 pathways. Biol Trace Element Res. 2021. 199: 2278-87. [DOI:10.1007/s12011-020-02322-5] [PMID]
20. Kang KP, Lee JE, Lee A, et al.Effect of gender differences on the regulation of renal ischemia reperfusion induced inflammation in mice. Molec Med Report. 2014. 9(6): 2061-68. [DOI:10.3892/mmr.2014.2089] [PMID] []
21. Topdağı Ö, Tanyeli A, Akdemir F, et al. Preventive effects of fraxin on ischemia/reperfusion-induced acute kidney injury in rats. Life Sci. 2020. 242:117217. [DOI:10.1016/j.lfs.2019.117217] [PMID]
22. Lotfi B, Bagheri Y, Abdollahpour A, et al. Protective effect of eprosartan against ischemic acute renal injury: Acting on NF-κB, caspase 3, and Sirtuin 1. Int Immunopharmacol. 2023. 115 109690. [DOI:10.1016/j.intimp.2023.109690] [PMID]
23. Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021. 11(4): 1845. [DOI:10.7150/thno.50905] [PMID] []
24. Amini N, Sarkaki A, Dianat M, et al. Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation. Pharmacol Rep.2019. 71(6): 1059-66. [DOI:10.1016/j.pharep.2019.06.007] [PMID]
25. Mojadadi A, Au A, Salah W, Witting P, Ahmad G. Role for selenium in metabolic homeostasis and human reproduction. Nutrients.2021. 13(9): 3256. [DOI:10.3390/nu13093256] [PMID] []
26. Ostróżka-Cieślik A, Dolińska B, Ryszka F. Therapeutic potential of selenium as a component of preservation solutions for kidney transplantation. Molecules. 2020. 25(16): 3592. [DOI:10.3390/molecules25163592] [PMID] []
27. Cui X, Lin L, Sun X, Wang L, Shen R. Curcumin protects against renal ischemia/reperfusion injury by regulating oxidative stress and inflammatory response. Evid Based Complement Alternat Med.2021. 2021: PMC8605918 [DOI:10.1155/2021/8490772] [PMID] []
28. El-Sayed SS, Shahin RM, Fahmy A, Elshazly S. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide. Life Sci. 2021. 287: 120144. [DOI:10.1016/j.lfs.2021.120144] [PMID]
29. Saito Y.Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr.2020. 66(1): 1-7. [DOI:10.3164/jcbn.19-31] [PMID] []
30. Kuznetsov AV, Javadov S, Margreiter R, et al. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants, 2019. 8(10): 454. [DOI:10.3390/antiox8100454] [PMID] []
31. Mehta SL, Kumari S, Mendelev N, Li P.Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012. 13(1): 1-12. [DOI:10.1186/1471-2202-13-79] [PMID] []
32. ZhouY, Zhang S, Liu C, Cai Y.The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol In Vitro. 2009. 23(2): 288-94. [DOI:10.1016/j.tiv.2008.12.009] [PMID]
33. Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. New Eng J Med. 2013. 369(23): 2236-51. [DOI:10.1056/NEJMra1215233] [PMID]
34. Ho KM, Morgan D. The proximal tubule as the pathogenic and therapeutic target in acute kidney injury. Nephron.2022. 146(5): 494-502. [DOI:10.1159/000522341] [PMID]
35. Khera A, Dong L, Holland O, et al, Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta, 2015. 36(8): 863-69. [DOI:10.1016/j.placenta.2015.06.010] [PMID]
36. Khader A, Yang W, Kuncewitch M, et al. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplant. 2014;98(2): 148-56. [DOI:10.1097/TP.0000000000000194] [PMID]
37. Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res.2013. 67(1): 60-67. [DOI:10.1016/j.phrs.2012.10.010] [PMID]
38. Nogueiras R., Habegger K, Chaudhary N, et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012;92(3):1479-1514. [DOI:10.1152/physrev.00022.2011] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb