Volume 31, Issue 149 (November & December 2023)                   J Adv Med Biomed Res 2023, 31(149): 525-535 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirmotalebisohi S A, Dehghan Z, Alibakhshi A, Yarian F, Zali H. Identification Biomarkers and Molecular Mechanisms Involved in Lung Transplant Rejection, and Drug Repurposing: A Systems Biology Study. J Adv Med Biomed Res 2023; 31 (149) :525-535
URL: http://journal.zums.ac.ir/article-1-7238-en.html
1- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Dept. of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
3- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
4- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
5- Dept. of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran , hakimehzali@gmail.com
Abstract:   (1460 Views)

Background and Objective: Lung transplantation is a promising  therapy for patients with end-stage lung disease. Pulmonary surfactant is a lipid and protein complex which has  a key role in lung function. Molecular mechanisms mediating in rejection of lung transplantation related to surfactants are not still comprehensively understood. In this study, we applied bioinformatics approaches to identify genes and molecular mechanisms involved in surfactant function in rejection of lung transplantation.
Materials and Methods: At first, transcriptomics data was extracted and analyzed to construct the protein-protein interaction network and gene regulatory network using Cytoscape. Then, networks analysis were performed to determine hubs, bottlenecks, clusters, and regulatory motifs to identify critical genes and molecular mechanisms involve in surfactant function in rejection of lung transplantation. Finally, critical genes selected for repuposing drugs.
Results: Analyzing the constructed PPIN and GRN identified SCD, FN1, ICAM1, ITGB8, FOXC1, SIX1, FHL2, KRT5, TFAP2A, GAS5, MALAT1, and lnrCXCR4 as critical genes. Enrichment analysis showed the genes are enriched for pulmonary surfactant metabolism dysfunction, defective CSF2RB causes pulmonary surfactant metabolism dysfunction 4 and 5, Interleukin-4 and Interleukin-13 signaling  may be the mechanisms for surfactant function in rejection of lung transplantation. We predicted some candidate drugs for preventing of lung transplantation rejection such as Sunitinib, Gemcitabine, Oxaliplatin, Hyaluronic acid, … .
Conclusion: Following our model validation using the existing experimental data, our model suggested critical molecules and candidate medicines involve in  surfactant function in rejection of lung transplantation for furtur investigations.

Full-Text [PDF 615 kb]   (266 Downloads) |   |   Full-Text (HTML)  (49 Views)  

Following our model validation using the existing experimental data, our model suggested critical molecules and candidate medicines involve in  surfactant function in rejection of lung transplantation for furtur investigations.


Type of Study: Original Article | Subject: Medical Biology
Received: 2023/08/25 | Accepted: 2023/11/11 | Published: 2024/01/29

References
1. Singer JP, Katz PP, Soong A, et al. Effect of lung transplantation on health‐related quality of life in the era of the lung allocation score: a US prospective cohort study. Am J Transplant. 2017;17(5):1334-45. [DOI:10.1111/ajt.14081] [PMID] [PMCID]
2. Yusen RD, Edwards LB, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: thirty-second official adult lung and heart-lung transplantation report-2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34(10):1264-77. [DOI:10.1016/j.healun.2015.08.014] [PMID]
3. de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490-511. [DOI:10.1164/rccm.200207-670SO] [PMID]
4. Wert SE, Whitsett JA, Nogee LM. Genetic disorders of surfactant dysfunction. Pediatr Develop Pathol. 2009;12(4):253-74. [DOI:10.2350/09-01-0586.1] [PMID] [PMCID]
5. Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Europ Respir J. 1999;13(6):1455-76. [DOI:10.1183/09031936.99.13614779] [PMID]
6. Halloran K, Parkes MD, Timofte I, et al. Molecular T-cell-mediated rejection in transbronchial and mucosal lung transplant biopsies is associated with future risk of graft loss. J Heart Lung Transplant. 2020;39(12):1327-37. [DOI:10.1016/j.healun.2020.08.013] [PMID]
7. Halloran PF, Potena L, Van Huyen J-PD, et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: The heart molecular microscope diagnostic (MMDx) system. J Heart Lung Transplant. 2017;36(11):1192-200. [DOI:10.1016/j.healun.2017.05.029] [PMID]
8. Bontha S, Maluf D, Mueller T, Mas V. Systems biology in kidney transplantation: the application of multi‐omics to a complex model. Am J Transplant. 2017;17(1):11-21. [DOI:10.1111/ajt.13881] [PMID]
9. Halloran KM, Parkes MD, Chang J, et al. Molecular assessment of rejection and injury in lung transplant biopsies. J Heart Lung Transplant. 2019;38(5):504-13. [DOI:10.1016/j.healun.2019.01.1317] [PMID]
10. Trulock E. Management of lung transplant rejection. Chest. 1993;103(5):1566-76. [DOI:10.1378/chest.103.5.1566] [PMID]
11. Okuda R, Matsushima H, Aoshiba K, et al. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis. SpringerPlus. 2015;4(1):1-9. [DOI:10.1186/s40064-015-1455-z] [PMID] [PMCID]
12. Zhang F, Pan T, Nielsen LD, Mason RJ. Lipogenesis in fetal rat lung: importance of C/EBPα, SREBP-1c, and stearoyl-CoA desaturase. Am J Respir Cell Molec Biol. 2004;30(2):174-83. https://doi.org/10.1165/rcmb.2005-0280OC [DOI:10.1165/rcmb.2003-0235OC] [PMID] [PMCID]
13. Fjellbirkeland L, Cambier S, Broaddus VC, et al. Integrin αvβ8-mediated activation of transforming growth factor-β inhibits human airway epithelial proliferation in intact bronchial tissue. Am J Pathol. 2003;163(2):533-42. [DOI:10.1016/S0002-9440(10)63681-4] [PMID]
14. DerHovanessian A, Weigt SS, Palchevskiy V, et al. The role of TGF‐β in the association between primary graft dysfunction and bronchiolitis obliterans syndrome. Am J Transplant. 2016;16(2):640-9. [DOI:10.1111/ajt.13475] [PMID] [PMCID]
15. Ou Yang L, Xiao SJ, Liu P, et al. Forkhead box C1 induces epithelial mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Molec Med Rep. 2015;12(6):8003-9. [DOI:10.3892/mmr.2015.4427] [PMID] [PMCID]
16. Wilson C, Collum S, Hernandez A, et al. Altered six1 and BMPR2 in pulmonary fibrosis. A68 molecular determinants of remodeling in lung fibrosis. Am Thorac Soc. 2018;197:A2224.
17. Dierck F, Kuhn C, Rohr C, et al. The novel cardiac z-disc protein CEFIP regulates cardiomyocyte hypertrophy by modulating calcineurin signaling. J Biol Chem. 2017;292(37):15180-91. [DOI:10.1074/jbc.M117.786764] [PMID] [PMCID]
18. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737-50. [DOI:10.1161/CIRCRESAHA.116.302521] [PMID]
19. Vaughan AE, Brumwell AN, Xi Y, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621-5. [DOI:10.1038/nature14112] [PMID] [PMCID]
20. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. New Eng J Med. 2001;345(7):517-25. [DOI:10.1056/NEJMra003200] [PMID]
21. Needleman D, Dogic Z. Active matter at the interface between materials science and cell biology. Nature Rev Mater. 2017;2(9):1-14. [DOI:10.1038/natrevmats.2017.48]
22. Brown L, Pasquale SM, Longmore WJ. Role of microtubules in surfactant secretion. J Apply Physiol. 1985;58(6):1866-73. [DOI:10.1152/jappl.1985.58.6.1866] [PMID]
23. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377-400. [DOI:10.1146/annurev.physiol.69.040705.141236] [PMID]
24. Suryadinata R, Levin K, Holsworth L, Paraskeva M, Robinson P. Recovery of airway cilia following lung transplant. J Heart Lung Transplant. 2020;39(4):S125. [DOI:10.1016/j.healun.2020.01.1016]
25. Brokaw C, Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskelet. 1987;8(1):68-75. [DOI:10.1002/cm.970080110] [PMID]
26. Pastva AM, Wright JR, Williams KL. Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proceed Am Thorac Soc. 2007;4(3):252-7. [DOI:10.1513/pats.200701-018AW] [PMID] [PMCID]
27. Tanaka T, Motoi N, Tsuchihashi Y, et al. Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB. J Med Genet. 2011;48(3):205-9. [DOI:10.1136/jmg.2010.082586] [PMID]
28. Amital A, Shitrit D, Raviv Y, Saute M, Medalion B, Kramer MR. The use of surfactant in lung transplantation. Transplantation. 2008;86(11):1554-9. [DOI:10.1097/TP.0b013e31818a8418] [PMID]
29. Paul WE. History of interleukin-4. Cytokine. 2015;75(1):3-7. [DOI:10.1016/j.cyto.2015.01.038] [PMID] [PMCID]
30. Jain-Vora S, Wert SE, Temann U-A, Rankin JA, Whitsett JA. Interleukin-4 alters epithelial cell differentiation and surfactant homeostasis in the postnatal mouse lung. Am J Respir Cell Molec Biol. 1997;17(5):541-51. [DOI:10.1165/ajrcmb.17.5.2883] [PMID]
31. Hedges JC, Singer CA, Gerthoffer WT. Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am J Respir Cell Molec Biol. 2000;23(1):86-94. [DOI:10.1165/ajrcmb.23.1.4014] [PMID]
32. Zhou Y, Xu W, Zhu H. CXCL8 (3-72) K11R/G31P protects against sepsis-induced acute kidney injury via NF-κB and JAK2/STAT3 pathway. Biol Res. 2019;52:29 [DOI:10.1186/s40659-019-0236-5] [PMID] [PMCID]
33. Ishihara A, Yamashita Y, Takamory H, Kuroda N. FDA approves new treatment for gastrointestinal and kidney cancer FDA approves new treatment for gastrointestinal and kidney cancer, 2006. Pathol Int. 2011;61(9):539-45. [DOI:10.1111/j.1440-1827.2011.02711.x] [PMID]
34. Courtwright AM, Lamattina AM, Louis PH, et al. Hyaluronan and LYVE-1 and allograft function in lung transplantation recipients. Sci Rep. 2019;9(1):1-8. [DOI:10.1038/s41598-019-45309-6] [PMID] [PMCID]
35. Gundrum D, Brown K, Collingridge DS. Chemotherapy order second check and error discovery rates by pharmacists and technicians. J Am Pharm Assoc. 2021;61(5):e132-e41. [DOI:10.1016/j.japh.2021.04.012] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb