Volume 32, Issue 152 (May & June 2024)                   J Adv Med Biomed Res 2024, 32(152): 209-218 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari A, Toupchi Khosroshahi V, aslanabadi N, Separham A, Fallahabadi H. Assessing ABO Blood Group Relation with Collateral Coronary Circulation Development Quality. J Adv Med Biomed Res 2024; 32 (152) :209-218
URL: http://journal.zums.ac.ir/article-1-7362-en.html
1- Cardiovascular Research Centre, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , amhohe@gmail.com
2- 1 Cardiovascular Research Centre, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
Abstract:   (120 Views)
Background & Objective:  Clinical outcomes of IHD depend on various factors, and coronary collateral circulation (CCC) development has recently been studied more. This study assessed blood groups' effect on CCC formation and patency.
 Materials & Methods:  In this retrospective study, all patients From January 2021 to August 2022, who had been hospitalized in the cardiac care unit of Shahid Madani Cardiology Hospital in Tabriz, Iran, were studied. ABO blood group typing was done with the Sinagene blood group determining kit. Collateral coronary circulation was assessed based on the Rentrop-Cohen grading scale for coronary arteries with 100% occlusion (CTO).
Results: 168 of 200 enrolled patients had well, and 32 had poor CCCs based on Rentrop scales. A+ blood groups were significantly more prevalent in patients with a good Rentrop scale, and A-, B- and AB- blood groups were significantly more prevalent in the poor CCC group. 21 patients in poor Rentrop and 68 in the good Rentrop group had hypertension (P = 0.009). Seventeen patients in the poor and 55 in the good Rentrop groups had DM (P = 0.028). The history of chronic kidney disease in poor Rentrop patients with 12 cases was significantly more than the good Rentrop group with 4 cases (P=0.000). The two groups had a significant difference in HLP prevalence (0.026).
 Conclusion:  This study showed DM, hyperlipidemia, hypertension, and A-, AB- and B- blood groups were strong predictors of poor and A+ for good CCC development.
 
Full-Text [PDF 662 kb]   (53 Downloads)    
Type of Study: Original Article | Subject: Clinical medicine
Received: 2023/09/30 | Accepted: 2024/03/4 | Published: 2024/06/21

References
1. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812-23. [DOI:10.1002/jcp.28350]
2. Bauersachs R, Zeymer U, Brière J-B, Marre C, Bowrin K, Huelsebeck M. Burden of coronary artery disease and peripheral artery disease: a literature review. Cardiovasc Therapeut. 2019;2019. [DOI:10.1155/2019/8295054]
3. Xing Z, Pei J, Tang L, Hu X. Traditional cardiovascular risk factors and coronary collateral circulation: Protocol for a systematic review and meta-analysis of case-control studies. Medicine. 2018;97(17). [DOI:10.1097/MD.0000000000010417]
4. Celebi S, Celebi OO, Berkalp B, Aydogdu S, Amasyali B. Blood group types O and Non-O are associated with coronary collateral circulation development. Clin Apply Thromb Hemostas. 2020;26:1076029619900544. [DOI:10.1177/1076029619900544]
5. Neshat S, Rezaei A, Farid A, et al. Cardiovascular diseases risk predictors: ABO blood groups in a different role. Cardiol Rev. 2022:10.1097.
6. Fefer P, Knudtson ML, Cheema AN, et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am College Cardiol. 2012;59(11):991-7. [DOI:10.1016/j.jacc.2011.12.007]
7. Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential hypertension. The Lancet. 2003;361(9369):1629-41. [DOI:10.1016/S0140-6736(03)13302-8]
8. Organization WH. Classification of diabetes mellitus. 2019.
9. Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S. Hyperlipidemia. Pediatrics Rev. 2020;41(8):393-402. [DOI:10.1542/pir.2019-0053]
10. Kern MJ, Ludbrook P. A simplified method to measure coronary blood flow velocity in patients: validation and application of a Judkins-style Doppler-tipped angiographic catheter. Am Heart J. 1990;120(5):1202-12. [DOI:10.1016/0002-8703(90)90137-M]
11. Topol EJ, Teirstein PS. Textbook of interventional cardiology E-Book: Elsevier Health Sciences; 2020. 1184 p.
12. Lee S, Park JM, Ann SJ, et al. Cholesterol efflux and collateral circulation in chronic total coronary occlusion: effect‐Circ Study. J Am Heart Assoc. 2021;10(5):e019060. [DOI:10.1161/JAHA.120.019060]
13. Allahwala UK, Khachigian LM, Nour D, et al. Recruitment and maturation of the coronary collateral circulation: current understanding and perspectives in arteriogenesis. Microvasc Res. 2020;132:104058. [DOI:10.1016/j.mvr.2020.104058]
14. Balakrishnan S, Kumar BS. Factors causing variability in the formation of coronary collaterals during coronary artery disease. Folia Morphologica. 2022.81(4):815-24 [DOI:10.5603/FM.a2021.0110]
15. Allahwala UK, Kott K, Bland A, Ward M, Bhindi R. Predictors and prognostic implications of well-matured coronary collateral circulation in patients with a chronic total occlusion (CTO). Int Heart J. 2020:19-456. [DOI:10.1536/ihj.19-456]
16. Jamaiyar A, Juguilon C, Dong F, et al. Cardioprotection during ischemia by coronary collateral growth. Am J Physiol Heart Circul Physiol. 2019;316(1):H1-H9. [DOI:10.1152/ajpheart.00145.2018]
17. Chigogidze M, Sharashidze N, Paghava Z. Gender differences in coronary collateral circulation during acute and stable ischemic heart disease. Translate Clin Med Georgian Med J. 2018;3(1):25-31.
18. Shen Y, Ding FH, Dai Y, et al. Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2018;17(1):1-9. [DOI:10.1186/s12933-018-0724-x]
19. Akyuz A, Mert B, Gur DO, et al. Association of lower serum irisin levels with diabetes mellitus: Irrespective of coronary collateral circulation, and syntax score. Northern Clin Istanbul. 2021;8(6):607. [DOI:10.14744/nci.2021.73669]
20. Graziani G, Aprami TM, Soeherman R. The risk factors and collateral system in coronary artery Disease among Patients in Bandung. Althea Med J. 2019;6(3):140-3. [DOI:10.15850/amj.v6n3.1726]
21. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circul Physiol. 2012;302(1):H10-H23. [DOI:10.1152/ajpheart.00574.2011]
22. Kornowski R. Collateral formation and clinical variables in obstructive coronary artery disease: the influence of hypercholesterolemia and diabetes mellitus. Coronary Artery Disease. 2003;14(1):61-4. [DOI:10.1097/00019501-200302000-00007]
23. Chen Z, Yang SH, Xu H, Li JJ. ABO blood group system and the coronary artery disease: an updated systematic review and meta-analysis. Sci Report. 2016;6(1):1-11. [DOI:10.1038/srep23250]
24. Carpeggiani C, Coceani M, Landi P, Michelassi C, L'Abbate A. ABO blood group alleles: A risk factor for coronary artery disease. An angiographic study. Atheroscler. 2010;211(2):461-6. [DOI:10.1016/j.atherosclerosis.2010.03.012]
25. Roberts R, Stewart AF. Genes and coronary artery disease: where are we? J Am College Cardiol. 2012;60(18):1715-21. [DOI:10.1016/j.jacc.2011.12.062]
26. Kiechl S, Paré G, Barbalic M, et al. Association of variation at the ABO locus with circulating levels of soluble intercellular adhesion molecule-1, soluble P-selectin, and soluble E-selectin: a meta-analysis. Circulation.2011;4(6):681-6. [DOI:10.1161/CIRCGENETICS.111.960682]
27. Taniyama Y, Morishita R, Hiraoka K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation. 2001;104(19):2344-50. [DOI:10.1161/hc4401.098470]
28. Namba T, Koike H, Murakami K, et al. Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation. 2003;108(18):2250-7. [DOI:10.1161/01.CIR.0000093190.53478.78]
29. Van Alsten SC, Aversa JG, Santo L, et al. Association between ABO and Duffy blood types and circulating chemokines and cytokines. Gene Immun. 2021;22(3):161-71. [DOI:10.1038/s41435-021-00137-5]
30. Sun L, Zhang X, Sun R, et al. Association of ABO blood groups and non-culprit plaque characteristics in acute coronary syndrome: an optical coherence tomography study. Ann Translat Med. 2020;8(16). [DOI:10.21037/atm-20-5381]
31. Jehangir Ali Shah GA, Kumar R, Khan KA, et al. Association of blood groups with the extent and severity of coronary lesions in patients with acute myocardial infarction. Pak J Med Dent. 2022;11(1): 17-24.
32. Sincer I, Mansiroglu AK, Erdal E, Cosgun M, Aktas G, Gunes Y. Could platelet distribution width predict coronary collateral development in stable coronary artery disease? Northern Clin İstanbul. 2020;7(2):112. [DOI:10.14744/nci.2019.47374]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb