Volume 32, Issue 153 (July & August 2024)                   J Adv Med Biomed Res 2024, 32(153): 269-279 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rastegar M, Moosavi M, Ahmadi Shadmehri A, Dehghani Firoozabadi M, Sorosh Z, Dehghani H. Identification of a Pathogenic Mutation in GMPPB Gene Through Whole Exome Sequencing in Two Consanguineous Families with Limb-Girdle Muscular Dystrophy. J Adv Med Biomed Res 2024; 32 (153) :269-279
URL: http://journal.zums.ac.ir/article-1-7385-en.html
1- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
2- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
3- Social Welfare Organization of South Khorasan Province, Birjand, Iran
4- Department of Family and Community Medicine, Birjand University of Medical Sciences, Birjand, Iran
Abstract:   (379 Views)
Background & Objective: Dystroglycanopathies represent heterogeneous clinical and genetic disorders typically characterized by weakness of the limb muscle. Pathogenic mutations in the GMPPB gene (OMIM # 615320) have been identified in various syndromes, including CMD, LGMD, and CMS. In this present study, our aim is to elucidate the presence of pathogenic mutation in two consanguineous Iranian families affected by LGMD2T.
  Materials & Methods:  Two families with affected children diagnosed with LGMD2T were recruited in the study. Comprehensive clinical examinations were performed by an expert neurologist on the proband and their respective families. Whole-exome sequencing (WES) was performed on genomic DNA extracted from peripheral blood mononuclear cells. Subsequently, candidate variants were identified using a bioinformatics pipeline, and familial co-segregation was confirmed through sanger sequencing.
Results: The present study is focused on two families whose identified variants are confirmed. Our findings revealed a heterozygous missense mutation in the GMPPB gene (NM_021971.4, c.308C>T (p. Pro103Leu) that entirely segregated from the observed phenotypes within his family. This variant was not identified in either the Exome Aggregation Consortium or the 1000 Genomes Project.
 Conclusion: The present findings contribute to the expansion of genetic data for Iranian individuals affected by LGMD2T. This data can be instrumental in enhancing screening, diagnosis, and interpretation within families with a history of this disease.
 
Full-Text [PDF 743 kb]   (194 Downloads)    
Type of Study: Original Research Article | Subject: Medical Biology
Received: 2023/11/12 | Accepted: 2024/02/19 | Published: 2024/08/20

References
1. Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 2006;119(2):199-207. [DOI:10.1242/jcs.02814] [PMID]
2. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355(6362):696-702. [DOI:10.1038/355696a0] [PMID]
3. Muntoni F, Torelli S, Brockington M. Muscular dystrophies due to glycosylation defects. Neurotherapeutics. 2008;5(4):627-32. [DOI:10.1016/j.nurt.2008.08.005] [PMID] [PMCID]
4. Bharucha-Goebel DX, Neil E, Donkervoort S, Dastgir J, Wiggs E, Winder TL, et al. Intrafamilial variability in GMPPB-associated dystroglycanopathy: Broadening of the phenotype. Neurology. 2015;84(14):1495-7. [DOI:10.1212/WNL.0000000000001440] [PMID] [PMCID]
5. Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24(4):289-311. [DOI:10.1016/j.nmd.2013.12.011] [PMID] [PMCID]
6. Brown SC, Winder SJ, Group EDgS. The 220th ENMC workshop: Dystroglycan and the Dystroglycanopathies held on the 27-29 May 2016, Naarden, The Netherlands. Neuromuscul Disord. 2017;27(4):387-95. [DOI:10.1016/j.nmd.2016.12.010] [PMID]
7. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan: the role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J Biol Chem. 1997;272(4):2156-62. [DOI:10.1074/jbc.272.4.2156] [PMID]
8. Wells L. The o-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem. 2013;288(10):6930-5. [DOI:10.1074/jbc.R112.438978] [PMID] [PMCID]
9. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 2014;33(1):1.
10. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet. 2013;93(1):29-41. [DOI:10.1016/j.ajhg.2013.05.009] [PMID] [PMCID]
11. Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: structure, function and regulation. Biochim Biophys Acta (BBA)-General Subj. 2008;1780(6):861-8. [DOI:10.1016/j.bbagen.2008.03.005] [PMID]
12. Raphael AR, Couthouis J, Sakamuri S, Siskind C, Vogel H, Day JW, et al. Congenital muscular dystrophy and generalized epilepsy caused by GMPPB mutations. Brain Res. 2014;1575:66-71. [DOI:10.1016/j.brainres.2014.04.028] [PMID] [PMCID]
13. O'Grady GL, Lek M, Lamande SR, Waddell L, Oates EC, Punetha J, et al. Diagnosis and etiology of congenital muscular dystrophy: We are halfway there. Ann Neurol. 2016;80(1):101-11. [DOI:10.1002/ana.24687] [PMID]
14. Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and molecular spectrum of muscular dystrophies (MDs) with intellectual disability (ID): A comprehensive overview. J Mol Neurosci. 2022;1-15. [DOI:10.1007/s12031-021-01933-4] [PMID]
15. Sarkozy A, Torelli S, Mein R, Henderson M, Phadke R, Feng L, et al. Mobility shift of beta-dystroglycan as a marker of GMPPB gene-related muscular dystrophy. J Neurol Neurosurg Psychiatry. 2018;89(7):762-8. [DOI:10.1136/jnnp-2017-316956] [PMID]
16. Cabrera-Serrano M, Ghaoui R, Ravenscroft G, Johnsen RD, Davis MR, Corbett A, et al. Expanding the phenotype of GMPPB mutations. Brain. 2015;138(4):836-44. [DOI:10.1093/brain/awv013] [PMID]
17. Jensen BS, Willer T, Saade DN, Cox MO, Mozaffar T, Scavina M, et al. GMPPB‐associated dystroglycanopathy: emerging common variants with phenotype correlation. Hum Mutat. 2015;36(12):1159-63. [DOI:10.1002/humu.22898] [PMID] [PMCID]
18. Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(9):2493-504. [DOI:10.1093/brain/awv185] [PMID] [PMCID]
19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-23. [DOI:10.1038/gim.2015.30] [PMID] [PMCID]
20. Cruz PMR, Belaya K, Basiri K, Sedghi M, Farrugia ME, Holton JL, et al. Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatry. 2016;87(8):802-9. [DOI:10.1136/jnnp-2016-313163] [PMID] [PMCID]
21. Natera-de Benito D, Töpf A, Vilchez JJ, González-Quereda L, Domínguez-Carral J, Díaz-Manera J, et al. Molecular characterization of congenital myasthenic syndromes in Spain. Neuromuscul Disord. 2017;27(12):1087-98. [DOI:10.1016/j.nmd.2017.08.003] [PMID]
22. Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet. 2014;94(2):161-75. [DOI:10.1016/j.ajhg.2013.10.024] [PMID] [PMCID]
23. Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66(6):1121-31. [DOI:10.1016/0092-8674(91)90035-W] [PMID]
24. Polavarapu K, Mathur A, Joshi A, Nashi S, Preethish-Kumar V, Bardhan M, et al. A founder mutation in the GMPPB gene [c. 1000G> A (p. Asp334Asn)] causes a mild form of limb-girdle muscular dystrophy/congenital myasthenic syndrome (LGMD/CMS) in South Indian patients. Neurogenetics. 2021;22(4):271-85. [DOI:10.1007/s10048-021-00658-1] [PMID]
25. Tian W, Zhou H, Zhan F, Zhu Z, Yang J, Chen S, et al. Lysosomal degradation of GMPPB is associated with limb‐girdle muscular dystrophy type 2T. Ann Clin Transl Neurol. 2019;6(6):1062-71. [DOI:10.1002/acn3.787] [PMID] [PMCID]
26. Chompoopong P, Milone M. GDP-Mannose Pyrophosphorylase B (GMPPB)-Related Disorders. Genes (Basel). 2023;14(2):372. [DOI:10.3390/genes14020372] [PMID] [PMCID]
27. Parsamanesh N,Ahmadi Shadmehri A,Zarifi s,Miri-Moghaddam E.Identification of the proximal biogenesis factor 1 gene point mutation in an Iranian family with Zellwear syndrome(ZS).J Adv Med Biomed Res.2021;29(134):167-75. [DOI:10.30699/jambs.29.134.167]
28. Mohammadi Asl J,Shahbazian H,Jasemi Zargari F,Kheradmand A.Identification of a novel CLCNKB mutation in an Iranian Family with Bartter syndrome Type 3.J Adv Med Biomed Res.2022;30(139)185-9. [DOI:10.30699/jambs.30.139.185]
29. Balcin H, Palmio J, Penttilä S, Nennesmo I, Lindfors M, Solders G, et al. Late-onset limb-girdle muscular dystrophy caused by GMPPB mutations. Neuromuscul Disord. 2017;27(7):627-30. [DOI:10.1016/j.nmd.2017.04.006] [PMID]
30. Gonzalez-Perez P, Smith C, Sebetka WL, Gedlinske A, Perlman S, Mathews KD. Clinical and electrophysiological evaluation of myasthenic features in an alpha-dystroglycanopathy cohort (FKRP-predominant). Neuromuscul Disord. 2020;30(3):213-8. [DOI:10.1016/j.nmd.2020.01.002] [PMID] [PMCID]
31. Panicucci C, Fiorillo C, Moro F, Astrea G, Brisca G, Trucco F, et al. Mutations in GMPPB presenting with pseudometabolic myopathy. JIMD Reports, Vol 38. 2018;23-31. [DOI:10.1007/8904_2017_25] [PMID] [PMCID]
32. Astrea G, Romano A, Angelini C, Antozzi CG, Barresi R, Battini R, et al. Broad phenotypic spectrum and genotype-phenotype correlations in GMPPB-related dystroglycanopathies: an Italian cross-sectional study. Orphanet J Rare Dis. 2018;13(1):1-9. [DOI:10.1186/s13023-018-0863-x] [PMID] [PMCID]
33. Krenn M, Sener M, Rath J, Zulehner G, Keritam O, Wagner M, et al. The clinical and molecular landscape of congenital myasthenic syndromes in Austria: A nationwide study. J Neurol. 2023;270(2):909-16. [DOI:10.1007/s00415-022-11440-0] [PMID] [PMCID]
34. Sun L, Shen D, Xiong T, Zhou Z, Lu X, Cui F. Limb-girdle muscular dystrophy due to GMPPB mutations: A case report and comprehensive literature review. Bosn J basic Med Sci. 2020;20(2):275. [DOI:10.17305/bjbms.2019.3992]
35. Song D, Dai Y, Chen X, Fu X, Chang X, Wang N, et al. Genetic variations and clinical spectrum of dystroglycanopathy in a large cohort of Chinese patients. Clin Genet. 2021;99(3):384-95. [DOI:10.1111/cge.13886] [PMID]
36. Fecarotta S, Gragnaniello V, Della Casa R, Romano A, Raiano E, Torella A, et al. Steroid therapy in an alpha-dystroglycanopathy due to GMPPB gene mutations: A case report. Neuromuscul Disord. 2018;28(11):956-60. [DOI:10.1016/j.nmd.2018.07.001] [PMID]
37. Luo S, Cai S, Maxwell S, Yue D, Zhu W, Qiao K, et al. Novel mutations in the C-terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome. Neuromuscul Disord. 2017;27(6):557-64. [DOI:10.1016/j.nmd.2017.03.004] [PMID]
38. Zhao Y, Li Y, Bian Y, Yao S, Liu P, Yu M, et al. Congenital myasthenic syndrome in China: genetic and myopathological characterization. Ann Clin Transl Neurol. 2021;8(4):898-907. [DOI:10.1002/acn3.51346] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb