Volume 32, Issue 153 (July & August 2024)                   J Adv Med Biomed Res 2024, 32(153): 280-287 | Back to browse issues page

Ethics code: IR.ZUMS.REC.1394.114


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalili M, Fathi M, Pourpak R, Alipour M. Aminoguanidine Induced Up-Regulation of Sphingosine-1 Phosphate Receptor-1 (S1PR1) in Heart Tissue of Diabetic Rats. J Adv Med Biomed Res 2024; 32 (153) :280-287
URL: http://journal.zums.ac.ir/article-1-7466-en.html
1- Zanjan Universit of Medical Sciences , khalili.mitra@gmail.com
2- Qazvin University of Medical Sciences
3- Zanjan Universit of Medical Sciences
4- Zanjan University of Medical Sciences
Abstract:   (338 Views)
Background & Objective:  Cardiac microvascular complications are a significant concern in diabetes, often related to dysfunction of the sphingosine-1-phosphate receptor-1 (S1PR1). Aminoguanidine (AG) is recognized for its capability to alleviate these complications by inhibiting advanced glycation compounds and enhancing vascular function in diabetic rats. Therefore, this study seeks to investigate the therapeutic potential of AG by assessing its impact on the gene expression of S1PR1 in the heart tissue of diabetic rats.
 Materials & Methods:  Thirty-four diabetic and healthy rats were stratified into eight groups, including diabetic rats, diabetic rats administered with varying doses of AG 50, 100, and 200 mg/kg, healthy rats treated with the same AG doses, and untreated healthy controls. RNA extraction and cDNA synthesis were performed using heart tissue samples, followed by real-time PCR analysis. The fold change in S1PR1 gene expression was then assessed and compared among diabetic rats treated with varying AG doses and their corresponding control groups.
Results: The analysis demonstrated a significant reduction in S1PR1 gene expression in diabetic rats compared to controls. However, AG treatment improved S1PR1 expression, which was correlated with the administered dose, with a notable upregulation observed in rats treated with 200 mg/kg of AG compared to other groups (P<0.001).
Conclusion:  Considering the significance of the S1PR1 pathway in inhibiting microangiopathy, augmenting S1PR1 gene expression through AG treatment may hold promise in preventing diabetes-related cardiovascular complications.
Full-Text [PDF 675 kb]   (131 Downloads)    
Type of Study: Original Research Article | Subject: Life Science
Received: 2024/03/29 | Accepted: 2024/10/31 | Published: 2024/08/20

References
1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabet Res Clin Pract. 2014; 103(2): 137-49. [DOI:10.1016/j.diabres.2013.11.002] [PMID]
2. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020; 10(1): 107-11. [DOI:10.2991/jegh.k.191028.001] [PMID] [PMCID]
3. Schofield J, Ho J, Soran H. Cardiovascular risk in type 1 diabetes mellitus. Diabet Ther : 2019; 10(3): 773-89. [DOI:10.1007/s13300-019-0612-8] [PMID] [PMCID]
4. Olesen KKW, Madsen M, Gyldenkerne C, Thrane PG, Wurtz M, Thim T, et al. Diabetes mellitus is associated with increased risk of ischemic stroke in patients with and without coronary artery disease. Stroke. 2019; 50(12): 3347-54. [DOI:10.1161/STROKEAHA.119.026099] [PMID]
5. Wei L, Yin Z, Yuan Y, Hwang A, Lee A, Sun D, et al. A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res. 2010; 80(1): 158-65. [DOI:10.1016/j.mvr.2010.01.003] [PMID]
6. Zeng Y, Liu X, Yan Z, Xie L. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1. Prog Biophys Mol Biol. 2019; 148: 32-8. [DOI:10.1016/j.pbiomolbio.2017.11.006] [PMID]
7. Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-phosphate signaling in cardiovascular diseases. Biomolec. 2023; 13(5). [DOI:10.3390/biom13050818] [PMID] [PMCID]
8. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell. 2012; 23(3): 587-99. [DOI:10.1016/j.devcel.2012.08.005] [PMID]
9. Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. Am J Physiol Heart Circ Physiol. 2007; 293(5): H3150-8. [DOI:10.1152/ajpheart.00587.2006] [PMID]
10. Yin Z, Fan L, Jia H, Li C, Zhang R, Wang H. S1P1 and S1P3 are potential markers of cardiac microangiopathy in diabetes. Med Hypotheses. 2012; 79(2): 168-70. [DOI:10.1016/j.mehy.2012.04.025] [PMID]
11. Vadla GPA, Vellaichamy E. Beneficial effects of aminoguanidine against streptozotocin-induced pathological changes in diabetic mice kidney. Biomed Prevent Nutr. 2013; 3(3): 221-6. [DOI:10.1016/j.bionut.2012.10.001]
12. Alipour M, Adineh F, Mosatafavi H, Aminabadi A, Monirinasab H, Jafari MR. Effect of chronic intraperitoneal aminoguanidine on memory and expression of Bcl-2 family genes in diabetic rats. Canadian J Physiol Pharmacol. 2015; 94(6): 669-75. [DOI:10.1139/cjpp-2015-0357] [PMID]
13. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol. 2005; 34(3): 597-601. [DOI:10.1677/jme.1.01755] [PMID]
14. English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000; 14(14): 2255-65. [DOI:10.1096/fj.00-0134com] [PMID]
15. Chen S, Yang J, Xiang H, Chen W, Zhong H, Yang G, et al. Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Molec Med. 2015; 35(4): 1103-8. [DOI:10.3892/ijmm.2015.2100] [PMID]
16. Yin Z, Fan L, Jia H, Li C, Zhang R, Wang H. S1P1 and S1P3 are potential markers of cardiac microangiopathy in diabetes. Med Hypothes. 2012; 79(2): 168-70. [DOI:10.1016/j.mehy.2012.04.025] [PMID]
17. Huijberts MS, Wolffenbuttel BH, Boudier HA, Crijns FR, Kruseman AC, Poitevin P, et al. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest. 1993; 92(3): 1407-11. [DOI:10.1172/JCI116716] [PMID] [PMCID]
18. Wang CC, Chang TY, Peng PJ, Chan DC, Chiang CK, Liu SH. Role of advanced glycation end-products in age-associated kidney dysfunction in naturally aging mice. Life Sci. 2024: 122984. [DOI:10.1016/j.lfs.2024.122984] [PMID]
19. Soliman M. Preservation of myocardial contractile function by aminoguanidine, a nitric oxide synthase inhibitors, in a rat model of hemorrhagic shock. Pak J Med Sci. 2013; 29(6): 1415-9. [DOI:10.12669/pjms.296.3717] [PMID] [PMCID]
20. Elbe H, Vardı N, Orman D, Taşlıdere E, Yıldız A. Ameliorative effects of aminoguanidine on rat aorta in Streptozotocin-induced diabetes and evaluation of α-SMA expression. Anatol J Cardiol. 2014; 14: 679-84. [DOI:10.5152/akd.2014.5047] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb