Volume 19, Issue 74 (3-2011)                   J Adv Med Biomed Res 2011, 19(74): 25-36 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darabian S, Rezaie S, Kordbachche P, Safari M R. The Effect of Variable CO2 Concentrations on HSP70 Gene in Trichophyton Rubrum and Microsporeum Canis. J Adv Med Biomed Res 2011; 19 (74) :25-36
URL: http://journal.zums.ac.ir/article-1-1413-en.html
1- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , dsima2004@yahoo.com
2- Division of Molecular Biology, Dept. of Medical Mycology & Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (169218 Views)

Background and Objectivs: Trichophyton rubrum is considered as the most common causes of dermatophytosis in human skin and nail tissues. Microsporeum canis is a zoophile dermatophyte which can be transmited to human. HSP70 is a 70 KD heat shock protein in fungi. In this study, the effects of variable CO2 concentrations were examined on HSP70 expression in T. rubrum and M. canis.
Materials and Methods: Strains used in this study were obtained from skin scales and nails of the patients who were suffering from onychomycosis. Samples were cultured on Sabouraud dextrose broth (SDB) and incubated at 25°C for 2, 4 and 7 days under 3%, 5%, and 10% of CO2 concentrations. Control cultures maintained for 7 days without CO2 concentrations. Then, RNA was isolated from the harvested mycelia mass, and HSP70 gene expression was studied in T. rubrum and M. canis by RT-PCR. The obtained results were compared to the Beta actin as a house keeping gene.
Results: The results of this study revealed the maximum variations under 3%,5%, and 10% of CO2 concentrations in maximum 7 days incubation period, and the expression of HSP70 gene showed different  variations  under different CO2 concentrations.
Conclusion: Our results showed a negative effect of CO2 concentrations in the expression of HSP70 in T. Rubrum and a positive effect in M. canis comparing to the controls.

Full-Text [PDF 790 kb]   (162845 Downloads)    
Type of Study: Original Research Article |
Received: 2011/03/8 | Accepted: 2014/06/23 | Published: 2014/06/23

References
1. Rippon JW. Medical mycology. dermatophytosis and dermatomysosis. Philadelphia, WB: sounders compony; 1988.
2. Brasch J. Pathogenesis of tinea. J Dtsch Dermatol Ges. 2010; 8: 780-6. [DOI:10.1111/j.1610-0387.2010.07481.x] [PMID]
3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2009; 52: 95. [DOI:10.1111/j.1439-0507.2008.01606.x] [PMID]
4. Rodríguez-Pazos L, Pereiro-Ferreirós MM, Pereiro M Jr, Toribio J. Onychomycosis observed in children over a 20-year period. Mycoses. 2010; (Epubahead of print). [DOI:10.1111/j.1439-0507.2010.01878.x] [PMID]
5. Anzawa K, Kawasaki M, Mochizuki T, Ishizaki H. Successful mating of Trichophyton rubrum with Arthroderma simii. Med Mycol. 2010; 48: 629-34. [DOI:10.3109/13693780903437884] [PMID]
6. Baldo A, Tabart J, Vermout S, et al. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes. J Med Microbiol. 2008; 57: 1152-6. [DOI:10.1099/jmm.0.47827-0] [PMID]
7. Bahn YS, Mühlschlegel FA. CO2 sensing in fungi and beyond. Curr Opin Microbiol. 2006. 11; 9: 572-8. [DOI:10.1016/j.mib.2006.09.003] [PMID]
8. Seo DC, DeLaune RD. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Science of the total environment. 2010; 408: 3623-31. [DOI:10.1016/j.scitotenv.2010.04.043] [PMID]
9. He Z, Xu M, Deng Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters. 2010; 13: 564-75. [DOI:10.1111/j.1461-0248.2010.01453.x] [PMID]
10. Supuran CT. Carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2010; 20: 3467-74. [DOI:10.1016/j.bmcl.2010.05.009] [PMID]
11. Bahn YS, Cox GM, Perfect JR, Heitman J. Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol. 2005; 15: 2013-20. [DOI:10.1016/j.cub.2005.09.047] [PMID]
12. Dancsó B, Spiró Z, Arslan MA, Nguyen MT, et al. The heat shock connection of metabolic stress and dietary restriction. Curr Pharm Biotechnol. 2010; 11: 13q-45. [DOI:10.2174/138920110790909704] [PMID]
13. Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res. 1998; 83: 117-32. [DOI:10.1161/01.RES.83.2.117] [PMID]
14. Rezaie S, Ban J, Mildner M, Poitschek C, et al. Characterization of a cDNA clone, encoding a 70 kDa heat shock protein from the dermatophyte pathogen Trichophyton Rubrum Gene. 2000; 241: 27-33. [DOI:10.1016/S0378-1119(99)00475-8]
15. Soleimanifar F.Study the existence of HSP70 gene in the pathogenic fungus Microsporum canis. [Dissertation]. Tehran: Islamic Azad University, North Tehran; 2003.
16. Abtin R. Study the effects of UV radiation on TrHSP70 gene in the fungus Trichophyton rubrum. [Dissertation]. Tehran: Islamic Azad University, North Tehran; 2001.
17. Lee JS, Seo JS. Differential expression of two stress-inducible HSP70 genes by various stressors. Exp Mol Med. 2002; 34: 131-6. [DOI:10.1038/emm.2002.19] [PMID]
18. Reidy M, Masison DC. Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104. Mol Cell Biol. 2010; 30: 3542-52. [DOI:10.1128/MCB.01292-09] [PMID] [PMCID]
19. Sandini S, Melchionna R, Bromuro C, La Valle. Gene expression of 70 kDa heat shock protein of Candida albicans: transcriptional activation and response to heat shock. Med Mycol. 2002; 40: 471-8. [DOI:10.1080/mmy.40.5.471.478] [PMID]
20. Park KC, Kim DS, Choi HO, Kim KH, et al. Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch Dermatol Res. 2000; 292: 482-7. [DOI:10.1007/s004030000173] [PMID]
21. Kim MS, Ko YJ, Maeng S, Floyd A, Heitman J, Bahn YS. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics. 2010; 185: 1207-19. [DOI:10.1534/genetics.110.118315] [PMID] [PMCID]
22. Bahn YS, Molenda M, Staab JF, Lyman CA, Gordon LJ, Sundstrom P. Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot Cell. 2007; 6: 2376-90. [DOI:10.1128/EC.00318-07] [PMID] [PMCID]
23. Sheth CC, Johnson E, Baker ME, Haynes K, Mühlschlegel FA. Phenotypic identification of Candida albicans by growth on chocolate agar. Med Mycol. 2005; 43: 735-8. [DOI:10.1080/13693780500265998] [PMID]
24. Klengel T, Liang WJ, Chaloupka J, Ruoff C, et al. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol. 2005; 15: 2021-6. [DOI:10.1016/j.cub.2005.10.040] [PMID] [PMCID]
25. Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol. 2006; 55: 1577-81. [DOI:10.1099/jmm.0.46474-0] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb