Volume 32, Issue 150 (January & February 2024)                   J Adv Med Biomed Res 2024, 32(150): 48-59 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi D, Jalali-Mashayekhi F, Nedaei K, Hemmati M, Ghadimi D, Rasooli Z. Quercetin and Adiponectin as Potential Inhibitors of Bisphenol A-Exposed Muscle Cells Toxicity. J Adv Med Biomed Res 2024; 32 (150) :48-59
URL: http://journal.zums.ac.ir/article-1-7268-en.html
1- Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
3- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
4- Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , mina1hemmati@yahoo.com
Abstract:   (107 Views)

ackground and Objective: Bisphenol A [BPA; 2,2-bis-(4 hydroxyphenyl) propane] is an environmental estrogenic and endocrine-disrupting compound that exerts its destructive effects through increasing oxidative stress, but the mechanisms underlying this effect have not yet been fully explained. This study evaluates BPA toxicity in muscle cells and the therapeutic potential of adiponectin (APN) and quercetin (QUER).
Materials & Methods: Confluent L6 rat muscle cells were exposed to BPA (50 and 100 μM) with APN (10 and 100 ng/ml) and QUER (10 and 25 mM) for 24 and 48 hours. Cell viability, pro-oxidant/antioxidant balance (PAB), catalase (CAT) activity, and KEAP1/Nrf2 gene expression were analyzed using desired methods.
Results: BPA in high doses (100 mM) significantly reduced the viability of the muscle cells, while APN and QUER increased cell survival in a time-dependent manner. The effect of QUER also was dose-dependent, while APN in high doses decreased the viability of the muscle cells. APN and QUER also reduced BPA-associated oxidative stress. These changes were significant in the case of QUER. The CAT activity was reduced in BPA-treated cells, which was notably increased with APN and QUER treatment. A decrease in Nrf2 gene expression of BPA-treated muscle cells improved by treatment with QUER and APN in a dose-dependent manner.
Conclusion: Our results hinted that APN and QUER could modulate BPA-induced oxidative stress in muscle cells through KEAP1/Nrf2 pathways. Accordingly, it can also be concluded that APN in low doses and QUER may significantly reduce muscle toxicity caused by BPA.

Full-Text [PDF 1118 kb]   (39 Downloads)    
Type of Study: Original Article | Subject: Life science
Received: 2023/06/11 | Accepted: 2023/11/1 | Published: 2024/01/30

References
1. Carwile JL, Michels KBJEr. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ Res. 2011;111(6):825-30. [DOI:10.1016/j.envres.2011.05.014] [PMID] [PMCID]
2. Groff TJCoip. Bisphenol A: invisible pollution. Curr Opin Pediatr. 2010;22(4):524-9. [DOI:10.1097/MOP.0b013e32833b03f8] [PMID]
3. Song S, Zhang L, Zhang H, Wei W, Jia L. Perinatal BPA exposure induces hyperglycemia, oxidative stress and decreased adiponectin production in later life of male rat offspring. Int J Environ Res Pub Health. 2014;11(4):3728-42. [DOI:10.3390/ijerph110403728] [PMID] [PMCID]
4. Alonso-Magdalena P, Ropero AB, Soriano S, Quesada I, Nadal A. Bisphenol-A: a new diabetogenic factor? Hormones. 2010;9(2):118-26. [DOI:10.1007/BF03401277] [PMID]
5. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Musc Res Cell Motil. 2015;36(6):377-93. [DOI:10.1007/s10974-015-9438-9] [PMID] [PMCID]
6. Maritim A, Sanders a, Watkins Iii J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Molec Toxicol. 2003;17(1):24-38. [DOI:10.1002/jbt.10058] [PMID]
7. Ábrigo J, Elorza AA, Riedel CA, et al. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Long. 2018;2018:2063179. [DOI:10.1155/2018/2063179] [PMID] [PMCID]
8. Xu D, Hu MJ, Wang YQ, Cui Y. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules. 2019;24(6):1123. [DOI:10.3390/molecules24061123] [PMID] [PMCID]
9. Morand C, Crespy V, Manach C, Besson C, Demigne C, Remesy . Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol. 1998;275(1):R212-R9. [DOI:10.1152/ajpregu.1998.275.1.R212] [PMID]
10. Song X, Wang Y, Gao L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J Mol Model. 2020;26:1-8. [DOI:10.1007/s00894-020-04356-x] [PMID]
11. Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J Func Food. 2018;40:68-75. [DOI:10.1016/j.jff.2017.10.047]
12. Straub LG, Scherer P. Metabolic Messengers: adiponectin. Nat Metab. 2019;1(3):334. [DOI:10.1038/s42255-019-0041-z] [PMID] [PMCID]
13. Essick EE, Ouchi N, Wilson RM, et al. Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling. Am J Physiol Heart Circul Physiol.2011;301(3):H984-H93. [DOI:10.1152/ajpheart.00428.2011] [PMID] [PMCID]
14. Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv. 2018;36(6):1738-67. [DOI:10.1016/j.biotechadv.2017.12.015] [PMID] [PMCID]
15. Suzuki T, Motohashi H, Yamamoto MJ. Toward clinical application of the Keap1-Nrf2 pathway.Trends Pharmacol Sci. 2013;34(6):340-6. [DOI:10.1016/j.tips.2013.04.005] [PMID]
16. Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. 2020;40(13):e00099-20. [DOI:10.1128/MCB.00099-20] [PMID] [PMCID]
17. Xin F, Jiang L, Liu X, et al. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 769: 29-33. [DOI:10.1016/j.mrgentox.2014.04.019] [PMID]
18. Ben Salem I, Boussabbeh M, Graiet I, Rhouma A, Bacha H, Abid Essefi S. Quercetin protects HCT116 cells from Dichlorvos-induced oxidative stress and apoptosis. Cell Stress Chaperones, 2016. 21(1): 179-86. [DOI:10.1007/s12192-015-0651-7] [PMID] [PMCID]
19. Hadwan MH, Najm Abed H. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief. 2016; 6:194-199. [DOI:10.1016/j.dib.2015.12.012] [PMID] [PMCID]
20. Li Z, Chen B, Dong W, et al. Epigenetic activation of PERP transcription by MKL1 contributes to ROS-induced apoptosis in skeletal muscle cells. Biochim Biophysica Acta (BBA)-Gene Regul Mech. 2018;1861(9):905-15. [DOI:10.1016/j.bbagrm.2018.07.011] [PMID]
21. Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 2016;44(1):128-34. [DOI:10.3109/21691401.2014.926456] [PMID]
22. Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC. Quercetin inhibition of ROS-dependent and-independent apoptosis in rat glioma C6 cells. Toxicol. 2006;223(1-2):113-26. [DOI:10.1016/j.tox.2006.03.007] [PMID]
23. Abharzanjani F, Hemmati M.Protective effects of quercetin and resveratrol on aging markers in kidney under high glucose condition: in vivo and in vitro analysis.Molec Biol Rep. 2021; 48(7): 5435-5442. [DOI:10.1007/s11033-021-06550-3] [PMID]
24. Aramjoo H, Ebrahimzadeh H, Hemmati M. Investigation of protective effects of quercetin on Oxidative stress induced by Vinblastine in bone marrow of Rats.Pharmaceut Sci. 2021; 27(2): 194-200. [DOI:10.34172/PS.2020.77]
25. Karamian M, Moossavi M, Hemmati M. From diabetes to renal aging: the therapeutic potential of adiponectin. J Physiol Biochem. 2021; 77(2): 205-214. [DOI:10.1007/s13105-021-00790-4] [PMID]
26. Esfahani M, Movahedian A, Baranchi M, Goodarzi MT. Adiponectin: an adipokine with protective features against metabolic syndrome. Iran J Basic Med Sci. 2015;18(5):430-42.
27. Podlich S PC, Bohme K, Kreutz R, et al. Comparative analysis of cytotoxic effects of bisphenol A and bisphenol S on human renal HEK293 cells. Arch Sci . 2018;2(1):114 [DOI:10.36876/smjnkd.1012]
28. Sangai NP, Verma RJ. Protective effect of quercetin on bisphenol A-caused alterations in succinate dehydrogenase and adenosine triphosphatase activities in liver and kidney of mice. Acta poloniae pharmaceutica. 2012;69:1189-94.
29. Fartkhooni FM, Noori A, Mohammadi A. Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. Int J Life Sci. 2016;10(1):65-9. [DOI:10.3126/ijls.v10i1.14513]
30. Abarikwu SO, Simple G, Onuoha SC, Mokwenye I, Ayogu JF. Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat's kidney and HEK-293 cells. Toxicol Rep. 2020;7:955-62. [DOI:10.1016/j.toxrep.2020.07.015] [PMID] [PMCID]
31. Shirani M, Alizadeh S, Mahdavinia M, Dehghani MA. The ameliorative effect of quercetin on bisphenol A-induced toxicity in mitochondria isolated from rats. Environ Sci Pollut Res. 2019;26(8):7688-96. [DOI:10.1007/s11356-018-04119-5] [PMID]
32. Demkovych A, Bondarenko Y, Hasiuk P. Effects of quercetin on antioxidant potential in the experimental periodontitis development. Int Med Apply Sci Int Med. 2019;11(1):60-4. [DOI:10.1556/1646.11.2019.06] [PMID] [PMCID]
33. Amjad S, Rahman MS, Pang MG. Role of antioxidants in alleviating bisphenol A toxicity. Biomolec. 2020;10(8):1105. [DOI:10.3390/biom10081105] [PMID] [PMCID]
34. Moghaddam HS, Samarghandian S, Farkhondeh T. Effect of bisphenol A on blood glucose, lipid profile and oxidative stress indices in adult male mice. Toxicol Mech Methods. 2015;25(7):507-13. [DOI:10.3109/15376516.2015.1056395] [PMID]
35. Hassan ZK, Elobeid MA, Virk P, et al. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev. 2012;2012:194829-. [DOI:10.1155/2012/194829] [PMID] [PMCID]
36. Mahdavinia M, Alizadeh S, Vanani AR, et al. Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. Iran J Basic Med Sci. 2019;22(5):499.
37. Wen X, Thorne G, Hu L, Joy MS, Aleksunes LM. Activation of NRF2 Signaling in HEK293 Cells by a First-in-Class Direct KEAP1-NRF2 Inhibitor. J Biochem Molec Toxicol. 2015;29(6):261-6. [DOI:10.1002/jbt.21693] [PMID] [PMCID]
38. Gao Z, Gao X, Fan W, et al. Bisphenol A and genistein have opposite effects on adult chicken ovary by acting on ERα/Nrf2-Keap1-signaling pathway. Chem Biol Interact. 2021;347:109616. [DOI:10.1016/j.cbi.2021.109616] [PMID]
39. Ji LL, Sheng YC, Zheng ZY, Shi L, Wang ZT. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med. 2015;85:12-23. [DOI:10.1016/j.freeradbiomed.2015.03.035] [PMID]
40. Darband SG, Sadighparvar S, Yousefi B, et al. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci. 2020;253:117584. [DOI:10.1016/j.lfs.2020.117584] [PMID]
41. Chou IP , Lin YY , Ding ShT, Chen ChY. Adiponectin receptor 1 enhances fatty acid metabolism and cell survival in palmitate-treated HepG2 cells through the PI3 K/AKT pathway. Eur J Nutr. 2014; 53 (3): 907-917. [DOI:10.1007/s00394-013-0594-7] [PMID]
42. Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020; 21: 1219. [DOI:10.3390/ijms21041219] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb