Volume 32, Issue 153 (July & August 2024)                   J Adv Med Biomed Res 2024, 32(153): 299-308 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eslami Farsani M, Razavi S, Esfandiari E, Rasoolijazi H, Seyedebrahimi R, Ababzadeh S. Effect of Aging and Regular Exercise on Prefrontal Cortex Histopathology, Myelin Density, and Antioxidant Activity of the Rats. J Adv Med Biomed Res 2024; 32 (153) :299-308
URL: http://journal.zums.ac.ir/article-1-7280-en.html
1- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
2- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , dr.sh.ra.1396@gmail.com
3- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
5- Tissue Engineering and Applied Cell Sciences Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
Abstract:   (362 Views)
Background & Objective: Aging related to decline in physiological structure and functional capacity in brain. The aim of this research was to examine the differences in the pathophysiology of the prefrontal cortex (PFC) region between young and old rats.
 Materials & Methods:  The young and old male Wistar rats (n= 40) were subgroups to normal young (NY), exercise young (EY), normal old (NO) and exercise old (EO). A forced aerobic exercise (FAE) program was established using a treadmill for 12 weeks. The exercise program including a turn off treadmill for normal groups while a turn on treadmill at a speed of 10-12 m/min for exercise groups. Toluidine blue and Cresyl-violet staining were used to evaluation of volume white matter (WM) and dark cell numbers in the prefrontal cortex (PFC). Levels of glutathione peroxidase (GPx) and malondialdehyde (MDA) were measured by spectrophotometric and Satoh methods, respectively. Afterward, the percentage of myelin basic protein (MBP) was assessed using immunohistochemical staining.
Results: Our findings revealed a significant enhancement in the mean percentage of WM area, percentage of MBP and level of GPx in EO group compared to NO group (P ≤ 0.05). Also, the dark cell number and MDA level decreased in the old rats with exercise compared to NO group (P ≤ 0.05). However, there was no significant difference between other groups (P ≥ 0.05).  
Conclusion: The results indicated that normal aging has destructive effects on the PFC and antioxidants rate. However, the regular exercise with specialized program could improve deteriorate changes of aging on brain.
 
Full-Text [PDF 897 kb]   (164 Downloads)    
Type of Study: Original Research Article | Subject: Medical Biology
Received: 2023/06/25 | Accepted: 2024/01/27 | Published: 2024/08/20

References
1. Ungvari Z, Tarantini S, Kiss T, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nature Rev Cardiol. 2018;15(9):555-65. [DOI:10.1038/s41569-018-0030-z] [PMID] [PMCID]
2. Xu X, Wang B, Ren C, et al. Age-related impairment of vascular structure and functions. Aging Dis. 2017;8(5):590. [DOI:10.14336/AD.2017.0430] [PMID] [PMCID]
3. Oswald MC, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett. 2018;592(5):679-91. [DOI:10.1002/1873-3468.12972] [PMID] [PMCID]
4. Bender AR, Völkle MC, Raz N. Differential aging of cerebral white matter in middle-aged and older adults: a seven-year follow-up. Neuroimage. 2016;125:74-83. [DOI:10.1016/j.neuroimage.2015.10.030] [PMID] [PMCID]
5. Kohama SG, Rosene DL, Sherman LS. Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline. Age. 2012;34(5):1093-110. [DOI:10.1007/s11357-011-9357-7] [PMID] [PMCID]
6. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016. 3565127 [DOI:10.1155/2016/3565127] [PMID] [PMCID]
7. Hussain F, Kayani HUR. Aging-oxidative stress, antioxidants and computational modeling. Heliyon. 2020;6(5):e04107. [DOI:10.1016/j.heliyon.2020.e04107] [PMID] [PMCID]
8. Choudhury G, MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. J Chron Obstructi Pulmon Dis. 2017;14(1):122-35. [DOI:10.1080/15412555.2016.1214948] [PMID]
9. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Med. 2018;54(4):287-93. [DOI:10.1016/j.ajme.2017.09.001]
10. Awwad M, El-Azim SAA, Marzouk F, El-Ghany E, Barakat M. Radio-protective chelating agents against DNA oxidative damage. Afr J Biochem Res. 2011;5:106-12.
11. Heilman KM, Nadeau SE. Cognitive Changes of the Aging Brain: Cambridge University Press; 2019. [DOI:10.1017/9781108554350]
12. Spreng RN, Wojtowicz M, Grady CL. Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev. 2010;34(8):1178-94. [DOI:10.1016/j.neubiorev.2010.01.009] [PMID]
13. Ferrari M, Bisconti S, Spezialetti M, et al. Prefrontal cortex activated bilaterally by a tilt board balance task: a functional near-infrared spectroscopy study in a semi-immersive virtual reality environment. Brain Topograph. 2014;27(3):353-65. [DOI:10.1007/s10548-013-0320-z] [PMID]
14. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB.What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20-40. [DOI:10.1016/j.pneurobio.2014.02.004] [PMID] [PMCID]
15. Harauz G, Boggs JM. Myelin management by the 18.5‐kDa and 21.5‐kDa classic myelin basic protein isoforms. J Neurochem. 2013;125(3):334-61. [DOI:10.1111/jnc.12195] [PMID] [PMCID]
16. Chapman TW, Hill RA. Myelin plasticity in adulthood and aging. Neurosci Lett. 2020;715:134645. [DOI:10.1016/j.neulet.2019.134645] [PMID] [PMCID]
17. Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral blood flow measurements in adults: a review on the effects of dietary factors and exercise. Nutrients. 2018;10(5):53-60. [DOI:10.3390/nu10050530] [PMID] [PMCID]
18. de Bruijn RF, Schrijvers EM, de Groot KA, et al. The association between physical activity and dementia in an elderly population: the Rotterdam Study. Europ J Epidemiol. 2013;28(3):277-83. [DOI:10.1007/s10654-013-9773-3] [PMID]
19. Soori R, Vahdat H, Shabkhize F, Eslami F, Ababzadeh S. Effects of aerobic exercise and rosemary extracts on inflammatory factors in cerebellar of male old rats. 2020; Qom Univ Med Sci J 14(4):11-21. [DOI:10.29252/qums.14.4.11]
20. Hamidizad Z, Ababzadeh S, Heidari F, Haeri N, Eslami Farsani M, Sadegh M. Cobalamin modulate neurotoxic effects of trimethyltin chloride on hippocampus neural cells and cognitive function. Physiol Pharmacol. 2019;23(2):82-90.
21. Farsani M, Dakhili M, Ababzadeh S, Yeganehparast M, Heidari F. Histomorphological and histochemical effects of diet with Qom zeolite on the tissue structure of the small intestine of broiler chickens compared with commercial zeolite. J Vet Res. 2019;74(2).
22. Seyedebrahimi R, Razavi S, Varshosaz J, Vatankhah E, Kazemi M. Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering. J Clust Sci. 2021;32:631-42. [DOI:10.1007/s10876-020-01822-7]
23. Espinoza SE, Guo H, Fedarko N, et al. Glutathione peroxidase enzyme activity in aging. J Gerontol A Biol Sci Med Sci. 2008;63(5):505-9. [DOI:10.1093/gerona/63.5.505] [PMID] [PMCID]
24. Shohag MH, Ullah MA, Azad MA, et al. Serum antioxidant vitamins and malondialdehyde levels in patients with obsessive-compulsive disorder. German J Psychiatr. 2012;15(1).
25. Basso JC, Suzuki WA. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plasticity. 2017;2(2):127-52. [DOI:10.3233/BPL-160040] [PMID] [PMCID]
26. Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Neurogen Neural Plasticity: Springer; 2012. 189-210. [DOI:10.1007/7854_2012_220] [PMID] [PMCID]
27. Morland C, Andersson KA, Haugen ØP, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communicat. 2017;8(1):1-9. [DOI:10.1038/ncomms15557] [PMID] [PMCID]
28. Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci. 2013;33(19):8270-5. [DOI:10.1523/JNEUROSCI.5855-12.2013] [PMID] [PMCID]
29. Marlatt MW, Potter MC, Lucassen PJ, van Praag H. Running throughout middle‐age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Develop Neurobiol. 2012;72(6):943-52. [DOI:10.1002/dneu.22009] [PMID] [PMCID]
30. St-Pierre DH, Richard D. The effect of exercise on the hypothalamic-pituitary-adrenal axis. Endocrinol Physic Act Sport: Springer; 2020. 41-54. [DOI:10.1007/978-3-030-33376-8_3]
31. Radak Z, Kumagai S, Taylor AW, Naito H, Goto S. Effects of exercise on brain function: role of free radicals. Apply Physiol Nutr Metab. 2007;32(5):942-6. [DOI:10.1139/H07-081] [PMID]
32. Jacqmot O, Van Thielen B, Michotte A, et al. C omparison of S everal W hite M atter T racts in F eline and C anine B rain by U sing M agnetic R esonance D iffusion T ensor I maging. Anatomic Rec. 2017;300(7):1270-89. [DOI:10.1002/ar.23579] [PMID]
33. Yang AC, Tsai S-J, Liu M-E, Huang C-C, Lin C-P. The association of aging with white matter integrity and functional connectivity hubs. Front Aging Neurosci. 2016;8:143. [DOI:10.3389/fnagi.2016.00143] [PMID] [PMCID]
34. Poulakis K, Reid RI, Przybelski SA, Knopman DS, Graff-Radford J, Lowe VJ, et al. Longitudinal deterioration of white-matter integrity: heterogeneity in the ageing population. Brain communications. 2021;3(1):fcaa238. [DOI:10.1093/braincomms/fcaa238] [PMID] [PMCID]
35. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neurosci. 2016;19(8):995-8. [DOI:10.1038/nn.4325] [PMID] [PMCID]
36. Hou J, Pakkenberg B. Age-related degeneration of corpus callosum in the 90+ years measured with stereology. Neurobio Aging. 2012;33(5):1009. 1-. 9. [DOI:10.1016/j.neurobiolaging.2011.10.017] [PMID]
37. Saab AS, Nave KA. Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol. 2017;47:104-12. [DOI:10.1016/j.conb.2017.09.013] [PMID]
38. Edler MK, Munger EL, Meindl RS, et al. Neuron loss associated with age but not Alzheimer's disease pathology in the chimpanzee brain. Philos Trans R Soc B Biol Sci. 2020;375(1811):20190619. [DOI:10.1098/rstb.2019.0619] [PMID] [PMCID]
39. Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468(7324):696-700. [DOI:10.1038/nature09536] [PMID] [PMCID]
40. Sarıkaya E, Doğan S. Glutathione Peroxidase in Health and Diseases. Glutathione system and oxidative stress in health and disease. 2020. [DOI:10.5772/intechopen.91009]
41. Maurya PK, Kumar P, Siddiqui N, Tripathi P, Rizvi SI. Age-associated changes in erythrocyte glutathione peroxidase activity: correlation with total antioxidant potential. Indian J Biochem Biophys. 2010;47(5):319-21.
42. Całyniuk B, Grochowska-Niedworok E, Walkiewicz KW, et al. Malondialdehyde (MDA)-product of lipid peroxidation as marker of homeostasis disorders and aging. Annales Academiae Medicae Silesiensis. 2016. [DOI:10.18794/aams/65697]
43. Hadzi-Petrushev N, Stojkovski V, Mitrov D, Mladenov M. D-galactose induced changes in enzymatic antioxidant status in rats of different ages. Physiol Res. 2015;64(1). [DOI:10.33549/physiolres.932786] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb