Volume 30, Issue 142 (September & October 2022)                   J Adv Med Biomed Res 2022, 30(142): 388-396 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi H, Doosti-Irani A, Bouraghi H, Nikzad S. Investigation of Gold Nanoparticles Effects in Radiation Therapy of Cancer: A Systematic Review. J Adv Med Biomed Res 2022; 30 (142) :388-396
URL: http://journal.zums.ac.ir/article-1-6609-en.html
1- Dept. of Radiology, Faculty of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
2- Dept. of Epidemiology, Hamadan University of Medical Sciences, Iran
3- Dept. of Health Information Technology, Faculty of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
4- Dept. of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , s.nikzad@umsha.ac.ir
Abstract:   (47911 Views)

Background and Objective: In recent years, the use of nanoparticles (NPs), especially gold nanoparticles (GNPs) in radiotherapy, has been repeatedly studied by in-vitro, in-vivo experiments, and Monte Carlo simulation. Some studies declare that specific absorption of GNPs (with a higher atomic number) by cancerous cells increases radiations’ lethal effect compared to normal cells. This review article aimed to investigate the radiosensitizing effect of GNPs in cancer radiotherapy.
Materials and Methods: Research databases such as Web of Science, PubMed, and Scopus were examined from December 2019. All Gold Nanoparticles Radiation Therapy (GNRT) articles that studied the radiosensitization of gold nanoparticles in radiotherapy were involved in the assessment. Among 706 chosen articles, 52 documents were included in this investigation.
Results: The results of all these studies indicate that an increase in tumor mortality happens due to higher radiation absorption by nanoparticles entering the tumor; however, the relationship between the interaction of radiant energy and the size of gold nanoparticles is controversial.
Conclusion: This review article will discuss recent advances in the development of gold-based NPs to improve radiotherapy.

Full-Text [PDF 424 kb]   (24632 Downloads) |   |   Full-Text (HTML)  (992 Views)  

 In recent years, the use of nanoparticles (NPs), especially gold nanoparticles (GNPs) in radiotherapy, has been repeatedly studied by in-vitro, in-vivo experiments, and Monte Carlo simulation. Some studies declare that specific absorption of GNPs (with a higher atomic number) by cancerous cells increases radiations’ lethal effect compared to normal cells. This review article aimed to investigate the radiosensitizing effect of GNPs in cancer radiotherapy.


Type of Study: Review Article | Subject: Bionanotechnology
Received: 2021/06/29 | Accepted: 2022/07/7 | Published: 2022/08/8

References
1. Dorsey JF, Sun L, Joh DY, et al. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Translat Cancer Res. 2013;2(4):280.
2. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics Med Biol. 2010;55(11):3045. [DOI:10.1088/0031-9155/55/11/004] [PMID]
3. Gharbavi M, Johari B, Rismani E, Mousazadeh N, Taromchi AH, Sharafi A. NANOG decoy oligodeoxynucleotide-encapsulated niosomes nnanocarriers: A promising approach to suppress the metastatic properties of U87 human glioblastoma multiforme cells. ACS Chem Neurosci. 2020;11(24):4499-515. [DOI:10.1021/acschemneuro.0c00699] [PMID]
4. Moradi M, Abdolhosseini M, Zarrabi A. A review on application of nano-structures and nano-objects with high potential for managing different aspects of bone malignancies. Nano-Struct Nano-Object. 2019;19:100348. [DOI:10.1016/j.nanoso.2019.100348]
5. Kim JK, Seo SJ, Kim HT, et al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Physic Med Biol. 2012;57(24):8309. [DOI:10.1088/0031-9155/57/24/8309] [PMID]
6. Kirkby C, Ghasroddashti E. Targeting mitochondria in cancer cells using gold nanoparticle‐enhanced radiotherapy: A Monte Carlo study. Med Physic. 2015;42(2):1119-28. [DOI:10.1118/1.4906192] [PMID]
7. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discover Today. 2010;15(19-20):842-50. [DOI:10.1016/j.drudis.2010.08.006] [PMID]
8. Su XY, Liu PD, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med. 2014;11(2):86.
9. Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B Biointerfaces. 2009;72(1):128-34. [DOI:10.1016/j.colsurfb.2009.03.025] [PMID]
10. Huang YC, Yang YC, Yang KC, et al. Pegylated gold nanoparticles induce apoptosis in human chronic myeloid leukemia cells. BioMed Res Int. 2014;2014: 182353. [DOI:10.1155/2014/182353] [PMID] [PMCID]
11. King RB, McMahon SJ, Hyland WB, et al. An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology. Cancer Nanotechnol. 2017;8(1):1-12. [DOI:10.1186/s12645-017-0027-z] [PMID] [PMCID]
12. Singh N. Nano-particulate technology: a promising technology in the field of cancer treatment therapies in recent scenario. Int J Recent Sci Res.2018; 9(3): 25078-82.
13. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Physic Med Biol. 2004;49(18):N309. [DOI:10.1088/0031-9155/49/18/N03] [PMID]
14. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL. Increased apoptotic potential and dose‐enhancing effect of gold nanoparticles in combination with single‐dose clinical electron beams on tumor‐bearing mice. Cancer Sci. 2008;99(7):1479-84. [DOI:10.1111/j.1349-7006.2008.00827.x] [PMID]
15. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662-8. [DOI:10.1021/nl052396o] [PMID]
16. McInnes MD, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018;319(4):388-96. [DOI:10.1001/jama.2017.19163] [PMID]
17. Zhu CD, Zheng Q, Wang LX, et al. Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism. J Nanobiotechnol. 2015;13:67. [DOI:10.1186/s12951-015-0129-x] [PMID] [PMCID]
18. Zhu C, Wang L, Cai Y, et al. Enhanced radiation effect on SMCC7721 cells through endoplasmic reticulum stress induced by C225-GNPs in vitro and in vivo. Oncol Lett. 2018;15(4):4221-8. [DOI:10.3892/ol.2018.7864] [PMID] [PMCID]
19. Zheng Q, Yang H, Wei J, Tong JL, Shu YQ. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother. 2013;67(7):569-75. [DOI:10.1016/j.biopha.2013.04.003] [PMID]
20. Zhao N, Yang ZR, Li BX, et al. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int J Nanomed. 2016;11:5595-610. [DOI:10.2147/IJN.S104034] [PMID] [PMCID]
21. Zhang Y, Huang F, Ren C, et al. Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv Sci. 2019;6(8):1801806. [DOI:10.1002/advs.201801806] [PMCID]
22. Zhang XD, Wu D, Shen X, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27):6408-19. [DOI:10.1016/j.biomaterials.2012.05.047] [PMID]
23. Zhang X, Wang H, Coulter JA, Yang R. Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation. Int J Nanomed. 2018;13:3541-52. [DOI:10.2147/IJN.S161157] [PMID] [PMCID]
24. Zabihzadeh M, Hoseini-Ghahfarokhi M, Bayati V, et al. Enhancement of radio-sensitivity of colorectal cancer cells by gold nanoparticles at 18 MV energy. Nanomed J. 2018;5(2):111-20.
25. Wang C, Jiang Y, Li X, Hu L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast Cancer (Tokyo, Japan). 2015;22(4):413-20. [DOI:10.1007/s12282-013-0496-9] [PMID]
26. Sung W, Ye SJ, McNamara AL, et al. Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale. 2017;9(18):5843-53. [DOI:10.1039/C7NR01024A] [PMID] [PMCID]
27. Shi M, Paquette B, Thippayamontri T, Gendron L, Guerin B, Sanche L. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. Int J Nanomed. 2016;11:5323-33. [DOI:10.2147/IJN.S97541] [PMID] [PMCID]
28. Nicol JR, Harrison E, O'Neill SM, Dixon D, McCarthy HO, Coulter JA. Unraveling the cell-type dependent radiosensitizing effects of gold through the development of a multifunctional gold nanoparticle. Nanomed-Nanotechnol Biol Med. 2018;14(2):439-49. [DOI:10.1016/j.nano.2017.11.019] [PMID]
29. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells. Phys Med. 2017;35:18-24. [DOI:10.1016/j.ejmp.2017.02.014] [PMID]
30. McMahon SJ, Hyland WB, Muir MF, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. J Europ Soc Ther Radiol Oncol. 2011;100(3):412-6. [DOI:10.1016/j.radonc.2011.08.026] [PMID]
31. Ma NN, Jiang YW, Zhang XD, et al. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. Acs Appl Mater Interfaces. 2016;8(42):28480-94. [DOI:10.1021/acsami.6b10132] [PMID]
32. Ma NN, Wu FG, Zhang XD, et al. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. Acs Appl Mater Interfaces. 2017;9(15):13037-48. [DOI:10.1021/acsami.7b01112] [PMID]
33. Ab Rashid R, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological characterization of the radiosensitization effects by gold nanoparticles for megavoltage clinical radiotherapy beams. Bionanosci. 2018;8(3):713-22. [DOI:10.1007/s12668-018-0524-5]
34. Al Zaki A, Joh D, Cheng ZL, et al. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. Acs Nano. 2014;8(1):104-12. [DOI:10.1021/nn405701q] [PMID] [PMCID]
35. Enferadi M, Fu SY, Hong JH, Tung CJ, et al. Radiosensitization of ultrasmall GNP-PEG-cRGDfK in ALTS1C1 exposed to therapeutic protons and kilovoltage and megavoltage photons. Int J Radiat Biol. 2018;94(2):124-36. [DOI:10.1080/09553002.2018.1407462] [PMID]
36. Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol, Biol, Physic. 2011;79(2):531-9. [DOI:10.1016/j.ijrobp.2010.08.044] [PMID] [PMCID]
37. Taggart LE, McMahon SJ, Butterworth KT, Currell FJ, Schettino G, Prise KM. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnol. 2016;27(21):215101. [DOI:10.1088/0957-4484/27/21/215101] [PMID]
38. Khosravi H, Hashemi B, Mahdavi SR, Hejazi P. Target dose enhancement factor alterations related to interaction between the photon beam energy and gold nanoparticles' size in external radiotherapy: using Monte Carlo method. Koomesh. 2015:255-61.
39. Rezaee Z, Yadollahpour A, Bayati V, Dehbashi FN. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: An in vitro study. Int J Nanomed. 2017;12:1431-9. [DOI:10.2147/IJN.S128996] [PMID] [PMCID]
40. Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomed. 2014;9(1):2459-67. [DOI:10.2147/IJN.S59471] [PMID] [PMCID]
41. Rahman WN, Bishara N, Ackerly T, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine. 2009;5(2):136-42. [DOI:10.1016/j.nano.2009.01.014] [PMID]
42. Mousavi M, Nedaei HA, Khoei S, et al. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. Int J Radiat Biol. 2017;93(2):214-21. [DOI:10.1080/09553002.2017.1231944] [PMID]
43. Cui L, Her S, Dunne M, et al. Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts. Radiat Res. 2017;187(2):147-60. [DOI:10.1667/RR14578.1] [PMID]
44. Amato E, Italiano A, Leotta S, Pergolizzi S, Torrisi L. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. J X-ray Sci Technol. 2013;21(2):237-47. [DOI:10.3233/XST-130374] [PMID]
45. Cui L, Tse K, Zahedi P, et al. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat Res. 2014;182(5):475-88. [DOI:10.1667/RR13642.1] [PMID]
46. Khosravi H, Ghazikhanlousani K, Rahimi A. Use of gold nanoparticles in MAGIC-f gels to 18 MeV photon enhancement. Nanomed J. 2019;6(1):67-73.
47. Her S, Cui L, Bristow RG, Allen C. Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat Res. 2016;185(5):549-62. [DOI:10.1667/RR14315.1] [PMID]
48. Smith CL, Ackerly T, Best SP, et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat Measur. 2015;82:122-8. [DOI:10.1016/j.radmeas.2015.09.008]
49. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol Cancer Res & Treat. 2007;6(5):395-401. [DOI:10.1177/153303460700600504] [PMID]
50. Chithrani DB, Jelveh S, Jalali F, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Res. 2010;173(6):719-28. [DOI:10.1667/RR1984.1] [PMID]
51. Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnol. 2011;22(28):285101. [DOI:10.1088/0957-4484/22/28/285101] [PMID]
52. Brivio D, Zygmanski P, Arnoldussen M, et al. Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Phys Med Biol. 2015;60(24):9203-13. [DOI:10.1088/0031-9155/60/24/9203] [PMID] [PMCID]
53. Gadoue SM, Toomeh D. Radio-sensitization efficacy of gold nanoparticles in inhalational nanomedicine and the adverse effect of nano-detachment due to coating inactivation. Phys Med. 2019;60:7-13. [DOI:10.1016/j.ejmp.2019.02.013] [PMID]
54. Ghorbani M, Bakhshabadi M, Golshan A, Knaup C. Dose enhancement by various nanoparticles in prostate brachytherapy. Australas Phys Eng Sci Med. 2013;36(4):431-40. [DOI:10.1007/s13246-013-0231-z] [PMID]
55. Koger B, Kirkby C. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization. ACS Nano. 2017;62(21):8455-69. [DOI:10.1088/1361-6560/aa8e12] [PMID]
56. Zhang XJ, Xing JZ, Chen J, et al. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Investiga Med. 2008;31(3):E160-E7. [DOI:10.25011/cim.v31i3.3473] [PMID]
57. Zhang AW, Guo WH, Qi YF, Wang JZ, Ma XX, Yu DX. Synergistic effects of gold nanocages in hyperthermia and radiotherapy treatment. Nanoscale Res Lett. 2016;11(1):279. [DOI:10.1186/s11671-016-1501-y] [PMID] [PMCID]
58. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharmacy Pharmacol. 2008;60(8):977-85. [DOI:10.1211/jpp.60.8.0005] [PMID]
59. Zhang Z, Niu N, Gao X, et al. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf B Biointerfaces. 2019;173:335-45. [DOI:10.1016/j.colsurfb.2018.10.008] [PMID]
60. Vieira L, Castilho ML, Ferreira I, Ferreira-Strixino J, Hewitt KC, Raniero L. Synthesis and characterization of gold nanostructured chorin e6 for photodynamic therapy. Photodiag Photodynam Ther. 2017;18:6-11. [DOI:10.1016/j.pdpdt.2016.12.012] [PMID]
61. Tentor FR, de Oliveira JH, Scariot DB, et al. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromolec. 2017;102:1186-94. [DOI:10.1016/j.ijbiomac.2017.04.106] [PMID]
62. Roa W, Zhang X, Guo L, et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnol. 2009;20(37):375101. [DOI:10.1088/0957-4484/20/37/375101] [PMID]
63. Movahedi MM, Mehdizadeh A, Koosha F, et al. Investigating the photo-thermo-radiosensitization effects of folate-conjugated gold nanorods on KB nasopharyngeal carcinoma cells. Photodiag Photodynam Ther. 2018;24:324-31. [DOI:10.1016/j.pdpdt.2018.10.016] [PMID]
64. S R Bhattarai , Derry P, Aziz K, et al. Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale. 2017;9(16):5085-93. [DOI:10.1039/C6NR08172J] [PMID] [PMCID]
65. Miladi I, Alric C, Dufort S, et al. The in vivo radiosensitizing effect of gold nanoparticles based MRI contrast agents. Small. 2014;10(6):1116-24. [DOI:10.1002/smll.201302303]
66. Atkinson RL, Zhang M, Diagaradjane P, et al. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Translat Med. 2010;2(55). [DOI:10.1126/scitranslmed.3001447] [PMID] [PMCID]
67. Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. 2013;137(1):81-91. [DOI:10.1007/s10549-012-2338-4] [PMID]
68. Liu CJ, Wang CH, Chen ST, et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Physic Med Biol. 2010;55(4):931-45. [DOI:10.1088/0031-9155/55/4/002] [PMID]
69. Vlastou E, Pantelis E, Efstathopoulos EP, Karaiskos P, Kouloulias V, Platoni K. Quantification of nanoscale dose enhancement in gold nanoparticle-aided external photon beam radiotherapy. Cancers. 2022; 14(9):2167. [DOI:10.3390/cancers14092167] [PMID] [PMCID]
70. Han O, Bromma K, Palmerley N,et al. Nanotechnology driven cancer chemoradiation: exploiting the full potential of radiotherapy with a unique combination of gold nanoparticles and bleomycin. Pharmaceutics. 2022;14(2):233. [DOI:10.3390/pharmaceutics14020233] [PMID] [PMCID]
71. Yogo K, Misawa M, Shimizu H, et al. Radiosensitization effect of gold nanoparticles on plasmid DNA damage induced by therapeutic MV X-rays. Nanomaterials (Basel). 2022;12(5):771. [DOI:10.3390/nano12050771] [PMID] [PMCID]
72. Janic B, Brown SL, Neff R, et al. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther. 2021;22(2):124-135. [DOI:10.1080/15384047.2020.1861923] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Advances in Medical and Biomedical Research

Designed & Developed by : Yektaweb